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THEORY OF DISCRETE AUTOMATA

UDC 62 —507

E.A. Yakubaitis

TIME-DEPENDENT ASYNCHRONOUS
LOGICAL AUTOMATA

The structure of time-dependent asynchronous logical automata is considered,
and methods given for their synthesis using concrete logic elements.

Consider an asynchronous logical automaton /1/, which we shall
henceforth call an automaton. Suppose that steady signals A4, A,...,A, are
applied to the inputs of the automaton. To simplify the exposition we
assume that the automaton has one input Z.

Any finite sequence of consecutive input signals will be called an input
sequence. An automaton in which the output signal is a function of a
finite number of input sequences will be called time-independent. If the
output signal also depends on the time, the automaton will be time-
dependent.
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FIGURE 1. Rectangular-pulse generator.



The signal emitted by the automaton for constant input signals
Ay, As, ..., A, forms a time sequence. Later we shall consider the case
when any time sequence has finite length I, and the time between two
changes in the values of the input signals A), 4, ..., A4, exceeds the
time required for the emission of a given time sequence.

We shall consider methods for the synthesis of time-dependent
automata using concrete logic elements (elements whose operation
involves a finite time lag). This will be done for logic elements of
types AND, OR, NOT, though our metheds are easily extended to any
other set of logic elements. In all cases the automata contain no delay
elements. We employ the terminology of /1/.

A time-dependent automaton must produce at least one time sequence.
It turns out that this may be achieved either by using delay elements or
by supplementing the given input signals A, A, ...,A, with a signal from
a rectangular-pulse generator (Figure 1c). The signal S is a pulse.
However, any pulse-type signal may be regarded as a particular kind of
steady signal, and so, for convenience, we shall always assume that S
is a steady signal.

Methods for the synthesis of time-dependent automata using delay
elements were described in /2/. Here we shall study methods which
utilize rectangular-pulse generators.

The duration t of the pulse emitted by the generator must be sufficient
to allow for the transition processes involved in the change of any of the

input signals A, As...,As S.

1. TIME-DEPENDENT AUTOMATON WITH UNCONTROLLED
RECTANGULAR-PULSE GENERATOR

The time sequences emitted by an automaton must often be synchronized
with the performance of some external device. In this case the time-
dependent automaton must employ an external uncontrolled generator
which emits an unlimited sequence of rectangular pulses (Figure 1b).

When the signal S appears at one of the inputs of the automaton, the
required time sequences can be produced. Synthesis of a time-dependent
automaton with n input signals A;, A4, ..., A, thus reduces to synthesis of
a time-independent automaton with n+1input signals A, Ay, ..., 4,, S.

In this connection it must be borne in mind that the input signals
Ay, Ag. .., A,may change at any instant of time. At these instants the
signal S may either remain constant or change

I}y S:0-1;
2) S=1; (1)
3) S:1-0;
4) S=0.
In most cases the time sequence must not depend on the signal S at the
instant the signals A,, A,,...,A, change, when the sequence is to be emitted.
2



In this case an input signal may change only when S:1>0o0r §:0>1. When
S=0 or S=1the automaton must postpone the change until the appropriate
change S:1-0 or S:0-1occurs.

Analysis shows that the synthesized automaton is simpler if the emission
of a time sequence can coincide only with one of these changes (either S:1-0
or §:0—1).

Accordingly, we shall confine ourselves to automata in which time
sequences are emijted after S$:0—1. Our method is easily extended to the
case when the change S:1-0 or both changes S:0-1and S:1—0 are permitted.

If a generator is available, any time-dependent automaton can be
constructed without delay elements. As for the generator itself, its circuit
(Figure 1) must contain a delay element T.
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FIGURE 2. Graph of finite automaton and fime sequence.

Consequently, any time-dependent automaton can be
constructed on the basis of a circuit containing a single
delay element.

Just as in the time-independent case, a time-dependent automaton can be
defined by the state graph or table of a finite automaton, involving n input
signals Ay, A; ..., 4,. In this case, however, certain nodes of the graph



will contain not the value of an output 51gna1 but signals designating time
sequences. The latter are represented as (separate) functions of time.

The graph and time sequences illustrated in Figure 2 provide an example
of the definition of a time-dependent automaton. Let us call the nodes at
which Z=0 or Z=1 time-independent; nodes at which time sequences are
produced will be called time-dependent.

The parameter [; defines the length of the i-th time sequence. The length
of a sequence is measured in terms of the number of durations .
Accordingly, in this example [p,=3 and [g=1.

The initial point (¢=0) for each time sequence is preassigned as the first
instant after a change in the signals A,, As,...,A, when the change S:0-1
occurs.

Table 1 is the table of the finite automaton whose graph is given in
Figure 2.

TABLE 1.
4 B z X ' X X
0 0 0 0 0 i
0 1 X2(D), Xa(E), Xs(1) X, X X
1 ! 0 0 0 1 0
1 I 1 | 0 1 0 0

A time-dependent automaton is uniquely determined by the graph (or table)
of a finite automaton together with diagrams of time sequences, but this
method is not convenient for synthesis. We therefore adopt a different
mode of representation.

Every time sequence can be represented by a subgraph involving n+1input
signals (A1, Asz,...,An, S). Thus, the sequence D (Figure 2) is represented by
the subgraph of Figure 3.

The time subgraph contains / working nodes (cycles), which represent the
time sequence. In addition, since the sequence can begin only when S:0-1,
each subgraph contains two additional preparatory nodes (cycles).

The time-dependent automaton operates as follows. If the given change
of one or several (simultaneous) signals Ay As...,A,0occurs when S=1, the
automaton proceeds to the first preparatory node (m). If S:1—-0o0or S=0at
this instant, it proceeds to the second preparatory node (ng). But if the
change of Ay, As,...,Anoccurs at the same time as §:0-—], the automaton
proceeds directly to the first working node (p1).

preparatory waiting

cycles working cycles (€=3) cycles

FIGURE 3. Subgraph.



When the time sequence (working node) is completed, the signals
Ay, A, ..., A, may remain constant for some time. Each working node is
therefore provided with two waiting nodes (o1, a2).

In synthesizing an automaton each node of the subgraph must be assigned
an intermediate signal. However, the number of intermediate signals may
be reduced by transferring the transition which occurs when §:0-—/at the
node prto the node . Both multiple-valued nodes, from which there are
transitions to the nodes =, and nz, may then be assigned the same
intermediate signal. The speed of the automaton is then somewhat lower,
but this will be apparent only on the rare occasions when changes in the
input signals Ay, As,...,A, coincide in time with §:0-1.

The number of intermediate signals may also be reduced by adding a
transition from the node ps to the node a2. The waiting nodes may then be
assigned the same intermediate signal.

To coordinate the subgraph of Figure 3 with that of Figure 2 we must
replace the node A=1, B=1 by two nodes, at which A=1, B=1, S=0and
A=1, B=1, S=1. The subgraph of Figure 3 is linked to this pair of nodes in
Figure 4. In accordance with the above reasoning, Figure 4 differs from
Figure 3 in that the transition y—p has been replaced by y—>mn;, and a
transition ps—>a2 has been added.

Construction of the subgraph representing the time sequence E is
analogous (Figure 5). Comparison of the subgraphs of Figures 4 and 5
shows the nodes p;3, a;, a; are common to both. This enables us to construct
a subgraph representing both time sequences (Figure 6).

T i P2 J4 &y 0,

B —B—O G —O—&—D
%

<,

H @
r

B

FIGURE 4. Subgraph D in transformed form.

FIGURE 5. Subgraph E.
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FIGURE 6. Combination of subgraphs Dand E.

In general, several time subgraphs can be combined in such a way that
they share the waiting nodes. If the time sequences represented by the
subgraphs in one or more intervals 7, beginning from the end of the
sequences, coincide, the corresponding working nodes are also common
to all the subgraphs. On the other hand, the preparatory nodes can never
be shared by several time sequences.

Note that combination of several subgraphs into one is not essential. If
the combination is not carried out, it will occur during the synthesis
process, when equivalent nodes are combined.

FIGURE 7. Graph of a finite automaton.



The signal § appears in the time subgraphs. It must therefore be
introduced in the remaining part of the graph of the finite automaton. To
this end, every time-dependent node of the graph with the n signals
Ay, As,..., A, is replaced by two nodes, one with S=0 and the other with S=1.
Each time-dependent node is replaced by the corresponding time subgraph.

FIGURE 8. Graph of finite automaton — second form.

The result is a graph with n+1input signals, whose nodes, if it is
completely defined, are marked Z=0or Z=1. Thus the distinction between
time-dependent and time-independent nodes disappears, and the graph is
in no way different from that of a time-independent automaton.

Figure 7 illustrates the graph for n+1input signals based on the graph
of Figure 2 and the subgraph of Figure 6. A different form of this graph
is obtained by grouping together nodes with the same input signals, as in
the case of time-independent automata (sce Figure 8). To clarify the
correspondence between the two forms of the graph the nodes have been
numbered.

Construction of the graph for n+1 input signals is considerably
simplified by adopting the following convention. Besides nodes
corresponding to a+1 input signals, we shall admit nodes corresponding
to n signals (where S may have any value).

In this way, using a given graph for n input signals and given time
sequences, one constructs the simplified graph.

Thus, for example, Figure 9 illustrates the simplified graph based on
the example of Figure 2. It is evident that the simplified graph is much
simpler than those of Figures 7 and 8.



FIGURE 9. Simplified graph.

Any of the graphs constructed above (Figures 7—9) may be used to set

up the table of the corresponding finite automaton

(Figure 9), assigning signals X, Xs,...,X. to the multiple-valued vertices,

we obtain Table 2.

TABLE 2,

A ’ B|S z A X X2 | X
ol ofo 0 o 0 0 0
0| of 1 ) ‘—*’0 N 0 0 0
o 1] 0] X(0), X:(0), }(5(0), X;{0), Xo(1) X | X K| X
ol 1i 1| Xi(0), Xao(1), Xu(1), AXA«('(;),;X:(‘O). Xo(i) [ X, X2 | Xo | X
1/ 0f0 o 7 0 - | 0 0- _d
1{0]1 (;A a | 0 0 0
1{1]o 0 0 0 0
1|1 0 0 0 0

. In our example

Xs

X4

Xs

Xs

Xz

Xq

X

Xs

Xy

Xo

Xy



TABLE 3.

A!BI | z X [ | %] x| x I Xs I pé | X | X
o| o| I 0 0 0 0 o lololo
ol 1 | X1(0), Xs(0), Xs(0), X:(0), Xo(1) oo ||l o]l x| %lo | xfo | x
o| 1| | Xi0), Xa(1), Xe(1), X0, Xe(@), XoD) | Xo%e| % | 2| x| x| %] xn) x| x
1 l 0| I 0 0 0 0 o | o ] 1 0
1 | 1 |—| 0 0 0 0 R o | o | o
TABLE 4.
A|B|S| z X x2|x3 X, x|x5|x,| X x,lxm
0 | 0| - | 0 1 oJolo]olo]e] o t |o
0 I 1 —-l 1 0 tli1]ololole]| o 1}o
1 I 0 '_‘I X5(0), Xio{l) Xo X0 | O 0 0 0 0 0 0 Xy | Xio
H I 1 0 I X,(0), X3(0), Xs5(1), X,(1), Xs(0) X 0 Xa| Xa| X5 Xs| X7| X0 Xs Xy | Xs
1 I 1| | X1(0), X2(0), Xu(1), Xs(0), Xs(0) I PAPAARABARA BN B A

In most cases, the resulting table may be simplified by using the
row-combination rule:

Any two rows in the table of a finite automaton which
differ only in the value of one input signal may be com-
bined.

Using this rule, we may replace Table 2 by Table 3. The dashes in
the S-column signify that the corresponding entry in the table may be
either S=0 or S=1.

As indicated, the signal Sis only needed in time-dependent automata,
and not in time-independent automata. If for some reason the signal S is
introduced in the specification of a time-independent automaton, it takes
no part in the synthesis process and does not figure in the resulting
equation system.

We now consider an example of the synthesis of a time-dependent
automaton with uncontrolled rectangular-pulse generator.

Example 1. Let us construct the time-dependent automaton
represented by the finite-automaton graph and time sequence given in
Figure 10. Undesirable competition is avoided by using filters. We assume
the presence of an uncontrolled generator emitting the unlimited sequence
of pulses illustrated in Figure 1lc.

We construct the subgraph for the given time sequence (signal D),
illustrated in Figure 11. Combining this subgraph with the graph of
Figurel10. we get the simplified graph of Figure 12.






Using the simplified graph, we construct the finite-automaton table
{Table 4). This table shows that the signals X;and X, are superfluous. With
this in mind, easy computations yield the equation system for the given
time-dependent automaton:

Z=AB+AB X1 0+ABS Xs+ABS X;+ABS Xy;
X;=AB+AB S Xy;

Xs=AB+ABS Xs+AB S Xy,

Xs=ABS X;+AB S Xs;

X;=AB'S Xs+AB S X4 (2)
Xs=AB'S Xs+AB S Xs;
X;=ABS X;+AB S Xs;
Xs=ABS X;+AB Xg;
X10=AB X10+AB Xs.

On the basis of equations (2) we construct the circuit illustrated in
Figure 13. Any undesirable competition is eliminated by filters.

2. TIME-DEPENDENT AUTOMATON WITH CONTROLLED
RECTANGULAR-PULSE GENERATOR

The use of an uncontrolled rectangular-pulse generator, which produces
an unlimited sequence of pulses, requires the construction of g inertial
subautomata, which govern the performance of the automaton at the
preparatory nodes-

g=2v, (3)

where » is the given number of time sequences.

When there is no need to synchronize the time sequences produced by the
automaton with an external device, a controlled generator of rectangular
pulses can be used.

By a controlled generator we mean a generator which produces a
sequence of rectangular pulses only on application of a control signal R=1.
The circuit of such a generator is illustrated in Figure la.

The control signal is described by the following Boolean function:

d
R= 3 A Ay . An)i Koy +Xp 4 ... +Xe), (4)

=1

where (4, 4;...4,):is a conjunction determining a set of nodes at least one
of which must produce a time sequence; X, X5, ..., X, are the intermediate
signals assigned to the working nodes of the subgraph representing the time



sequence; 4 is the number of conjunctions (4; 4;...A.):.

X; X, A
485 2 5 AB
- %5 X ABSX,
@ ~ Xe Xg ABSX,
@_’_B XS Xm ABSX:,
P ABSX,
- ABSX,
ABSYX,
AND 7
={Ann]— e
AND ABX,
={ AnD |
"1=F { AND |—
=== = -
1 AND L,
1 1—
fann}
1 | . Z
=] AnD | o= e}
{ AND |-
OR Y2
Lt —
— 1 or I
: {
Xs
OR
]' F ,|
Xs
o o 1]
F
XE
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LF |
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— £,
-4
- ] or i
h)(m
OR
— |- L

FIGURE 13, Circuit of automaton.

To form the two inertial subautomata characterizing the waiting nodes
(e.g., subautomata X, X;in equations (2)) one needs at least two AND-
elements, two OR-elements, and two filters. When a controlled generator
is used there is no need for preliminary nodes; consequently, the above
elements become superfluous.

On the other hand, the controlled generator (Figure la) contains one
more AND-element than the uncontrolled generator (Figure 1b). In
addition, to produce the signal R (4) one needs at most one AND-element,
two OR-elements, and one filter, for each time sequence.

12



These results are compared in Table 5.

TABLE 5.
Type of element
Subcircuit T

AND OR NOT F
Inertial :ubautomata characterizing i
the waiting nodes 2v 2v 20 2o
Components added in controlled
generator L 0 0 0
Production of signal R v v+1 0 1

It is clear from this table that when v=1a controlled generator should
always be used, as far as the simplicity of the circuit of the time-dependent
automaton is concerned. The resulting simplification is greater, the
greater v.

We now consider an example of synthesis of a time-dependent automaton
containing a controlled generator.

Example 2. We construct the time-dependent automaton whose graph
and diagrams are given in Figure 2. As before, undesirable competition
is eliminated by filters.

FIGURE 14. Simplified graph.

On the basis of Figure 2 we construct the simplified graph illustrated in
Figure 14. A comparison of this graph with that of Figure 9 shows that with
the incorporation of a controlled generator the four waiting nodes are
dropped.

Using the graph of Figure 14 we set up the finite-automatontable ¢Table 6).



TABLE 6.

Alsls] oz | |ufsixs
0o}~ L B I
of1]o Xi(0), Xa(0), Xs(1) x, |x3|‘)_(_,_|o|x5
o] |1 Xi(0). Xa(1), Xe(1), Xs(1) X, X | x| 1 x| %
1] o]- 0 o Jt]o]ofo
1]— 0 o |ojol1]o

From Table 6, taking into account that the signal X;is superfluous, we
get the following equations:

Z=ABSX,+ABSX,+ABXs;
X,=ABSX;+ABSX,+AB,
X;=ABSX;+ABS Xy (5)
X,=ABSX,+AB;
Xs=AB+ABX.

As follows from equation (4), the control signal is

R=4A B(X2+Xs+X4). (6)

O X
Otn
L

by, A

A8

ABSX,
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D > -
z z Z
lw] ] I
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T
11
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1

I
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T IHORE

1
@]
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1‘!

AND

FIGURE 15. Circuit of automaton.
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The circuit based on equations (5) and (6) is illustrated in Figure 15.
Undesirable competition in the circuit is eliminated by filters.
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unc 62-507

E.A. Yakubaitis, V.G. Govrobets

SYNTHESIS OF SEQUENTIAL ASYNCHRONOUS LOGICAL
AUTOMATA USING THREE TYPES OF MODULES

A method is given for synthesizing sequenual asynchronous logical automata using a minimum
number of modules of three types, allowing for two restrictions,

1. INTRODUCTION

Microminiaturization of semiconductor elements and the developing
technology of integrated circuits raises the problem of constructing
automata based on modules.

This paper considers methods for the synthesis of time-independent
sequential asynchronous logical automata (briefly — automata) based on
three types of modules. *

In the general case /1/ an automaton is specified by a state graph, a
state table, or a numerical expression, and described by a system of
k+m equations which define the inertial and primitive subautomata:

i

2"y

X;= V otii(An A, AN B Xs), (=1, 2, .. k); (1)
i=0
2"y

Zt=V vie (A Apey . A : (bt Xu), (=1, 2, ..., m), (2)

i=0

where n is the number of inputs, %2 the number of inertial subautomata,

m the number of outputs, (A, An,—i...4)): the elementary conjunction of =
input variables defined by the i-th row of the table, aj Bij, yit, 6 coefficients
defined by the table, with values zero or one, X, X,,...,X; intermediate
variables, X;;and Xi variables from the set X, Xs,...,Xx , and Z,2,,...,2n
output variables.

“* We employ the terminology of /1/.
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2. DESCRIPTION OF THE MODULES

We assume that the modules are based on elements of type AND, NOT,
and F (filter). The circuits of these elements are illustrated in Figures 1,
2, and 3. It is assumed that the outputs of these elements can be
connected at ganp, gnoT 4F » respectively, to the inputs of other elements.

output

nput
7
|
|
|
|
|
|
)|

output

input

: I : 1 1

FIGURE 1. AND circuit. FIGURE 2, NOT circuit.

output

mput

“1
] |

=0

FIGURE 3. Filter circuit.

a. A-module

This type of module involves /4 NOT elements, used to produce the
negations of input or intermediate signals.

p—
-
| | £

A 1
———4 AND, |
0 l
13§ 1
l A |
| 1£2 |
'é 1
2 _9:':__1._; AND, % :
p— i |
| NOT g = | 2 |
B | g = | 1£3 |

8 = 8 —4 D, i

] — | = 8 ] AND, 2 F

3 NOT, ! E 5 I ’ :

g =1 z2 | Te7 |

— & <«

25 __1fvor, | ! EE | ! |

5 @ L 1 2 ' |

= ...1I.... PP Jl [Eeq |

a. Dy |

= i 'NOT, | ! =t anp, 2

LA ] |
S —— S |
FIGURE 4, Circuit of 4-module. FIGURE 5. Circuit of B-module.
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b. B -module

The circuit of this module is given in Figure 5. It consists of I3 AND

Several B-modules may be combined by using outputs E, or F.

elements.
To

Using one AND element one can obtain a conjunction of rank r.

produce a conjunction of rank R one must combine l—l—i-[ AND-elements. *

This is done by ccnnecting the outputs E\”, E,..., E;, . For instance, if
Y g B

r=3 and R=8 one must connect E,” to Ey’, E;”to E4.

Thus, using one B-module one can realize any conjunction of rank at
most rlg. Conjunctions of higher rank are formed by connecting several
B-modules at the point E/.

The disjunction of the resulting conjunctions is obtained (Figure 5) by
direct connection of the outputs D), D,..., Diz. This is made possible by
the diodes connected to the outputs of the AND elements (Figure 1).

When the terms of the disjunction are conjunctions formed by two or
more B-modules, the latter are directly connected at the points F.

c. C-module

To eliminate undesirable competition in each feedback circuit and
at each output of the automaton, filters must be introduced /1/. This is
done by a module of type €. Each C-module contains [¢ filters (Figure 6).

intermediate or
output signals
E H ‘

FIGURE 6. Circuit of C-module.

3. MINIMIZING THE NUMBER OF B-MODULES

In automata synthesis it often happens that the same conjunction occurs
in more than one of the equations describing the automaton. To simplify
our method, we iniroduce the following restriction. Every conjunction is
realized as many times as it occurs in equations (1), (2). Thus we always

have qANp=l.
In view of this restriction, each of the equations describing the

automaton must be simplified independently cf the other equations in the

system.

* Here and below}afdenotes the smallest integer greater than a.
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Minimization of equations (1), (2)yields a system of k+m equations;
the i-th equation contains p; prime implicants (conjunctions) of rank

Ri; (1<sj<sp;, I<sissk+m). To realize the ij-th conjunction, G= % AND

elements are needed. Thus, the lower bound for the number of B-modules
required to realize the i-th equation is

Py
>0
j=1

&1 |i=
L= L J 6 v
and for all k+4m equations:
k+m
LLB= ZLH- (3)

i=1

4. AUTOMATON-SYNTHESIS ALGORITHM

The foregoing considerations yield the following algorithm for synthesis
of an automaton on the basis of modules of type 4, B, and C.

1. Determine the system of equations (minimal disjunctive normal
forms) of the given algorithm by the method of /1/. Simplify each equation
separately, independently of the others. The equation system will then

k+m
contain 2 pi prime implicants, some of which may coincide.
i=1

2. If the negation of the i-th (input or intermediate) signal occurs v:
times in the equation system, its realization requires I‘Z—VL [NOT elements.
NOT!

If the number of negations occurring in the system is s,i the total number of

NOT elements needed is N= 2] i [ Thus the required number of
i=1

&OT
A-modules (not counting amplification of input and intermediate signals) is
L,,=]l[. (4)
la
3. The number of C-modules is
Lc=]k—;‘—'" . (5)
C

4. Given the rank of theij-th prime implicant (1<<j<sp,1<<i<<k+m) the
number of AND elements required for its realization is

th=]%[ .
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5. Find the prime implicants for which Gy=!lp; for each of these,
choose an integer u;; such that the difference G'y;= Gi;—vils Satisfies the
inequality 0=s<G'y;<Ip.

If G';;=0., the corresponding prime implicant requires exactly vy
B-modules, and does not figure in the following steps (7, 8).

If G’;;>0, more than vy (but not more than v;+1) modules are necessary.
Therefore, having determined the value of v;, in the next steps we shall
replace Gi; by G’i;;as the number of AND elements necessary for the
corresponding prime implicant.

For each i, find the number L; of B-modules for the i-th equation, by
adding all the corresponding values of vy.

6. For the remaining prime implicants, satisfying Gij</s, take
G,ij-: Gij‘

7. Construct a loading table for each equation, with entries for all
prime implicants such that G’;;>0. If the number of these implicants in
the i-th equation is p:(0<<pi=<p;),» the loading table first contains 2%+ rows,
each containing pi; zeros and units. Each entry in the table corresponds to
one of the numbers G’;;.

We retain in the table only rows for which the sum of the G’;for the
unit entries is at most Is.

Simplify the table by eliminating all rows which are absorbed by
other rows (one row is absorbed by another if, apart from units in the
same positions as those in the latter, the former contains at least one
additional unit).

Denote the remaining rows by c¢u, Ci, ..., Ciu;.

8. Using the simplified table, construct a function @i, which is a
conjunction of p; disjunctions, for the i-th equation. Each disjunction
corresponds to a column in the table, with as many terms as there are
units in the corresponding column.

Opening brackets and simplifying the resulting expression, we obtain
a disjunction of a certain number of conjunctions in the variables ¢, ¢, ...,
ciu; - Choose the conjunction containing the minimum number of variables.

Realization of the prime implicants in the i-th eqguation is based on
this conjunction. Each of the variables ¢y, ¢, ..., cin; 0CCUrring therein
is realized by one B-module. Given the G’;; that correspond to the unit
entries in the row corresponding to this variable, we can determine what
prime implicants are realized by the given B-module. If the prime
implicant is such that v;;>0, we determine how to link this module to the
other v;; modules to realize the implicant.

The rank of the selected conjunction determines the number L”; of
B-modules required to synthesize the prime implicants with v;;=0.

9. Determine the total number of B-modules required to realize the
i-th equation, L;=L":+L"; . The entire system of equations thén requires

ktm
Lp= 2 L; (6)
i=1
B -modules.
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10. Using (4)— (6), determine the total number of modules of types 4, B,
and C required to realize equations (1), (2):

L=L_4+L}3+Lc.

The inertial subautomata and input functions are combined in a single
automaton.

5. EXAMPLES

Example 1. Using modules of types A, B, and C(qNOT=5,qF-=3, r=3, [4=5,
Ip=8, Ic=2) , let us synthesize the automaton given by the following
numerical expression:

Z (A1, Ay, As, A4, As, As, A7, As, Ae)=3 (103 Z, 1772, 179 Z,
185 Z, 187 Z, 264, 268, 296, 300, 310, 311, 328, 332, 344, 360, 364,
433 Z, 435 Z, 438, 439, 441 Z, 443 Z, 456, 472).

1. The automaton is described by a single equation. The minimal
disjunctive normal form of the function Z is:

Z=EQZBA7 AGZSI-AH A3A2A1 Z+ A9A7ZSA423ZQA|+
+Ag A7 As As Ay Ag Ap+ Ao Ay As Ay Ay B+ Ag A7 As As A5 A, Z.

2. The numbers of recurring negations of input signals are vi=vs=vg=1
and ve=vs=wvs= vs=vr=vsg=2. Since Gyor=" and la=5, the reqguired number of
B-modules is L,a=2.

3. The required number of ¢-modules is Lc=1(by assumption, l[z=2,
k4+-m=1).

4. Find the ranks of the five prime implicants: R)=10, Re=R3=Rs=7
and R;=6. Then the numbers of AND-elements for the prime implicants
r=3 are G,=4, Go=G0G3=Gs=3 and G4=2.

5. There are no prime implicants with G;=8, (L'=0).

6. Take G\/=4, Gy'=Gy'=Gy =3 and G/=2.

7. Construct the loading table for B-modules (Table 1), retaining only
rows in which the sum of Gj over columns containing units is at most eight.
The resulting simplified table is Table 2,which contains seven rows.

8. Using Table 2, construct the function

O = (c7+cs+cs) (cr+ce+catc3) (cr+eatc2) X
X (co+catci) (cs+cat+cot+ci)=crc14cs Ca+C5 Cat
+¢7 Cs 5+ C7 Cg C3-+C7 C Co+ €7 C4 Ca+C7 C4 C2+C6 €4 C3+-
+cscqci+Cscaca0n

Of these conjunctions we select the three (cren, cecz, and c¢seq) that involve
two variables. Since they are equivalent, we take the first (¢7c1) and use it
as the basis for realization of the prime implicants, with two B-modules
(L"=2). One of these modules corresponds to the first and second prime
implicants, the other to the third, fourth, and fifth.
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TABLE 1.

_ e e e = = OO0 00 0 OC O OO0 OO
e = T =T = T = S R = T o B o S < S o I =
—_C 0 =0 00—, OO0 = — O OO
O = OO0 =0 =00 =00 - =0
SO0 00 —~00 00 OO0 0 -0 —

TABLE 2.

[
[%3
[=3
Cq
Cs

Cs

-
_— O - = OO
-0 o -0 o
R A -

(%]

| O o e o

|

9. The total required number of B-modules is Lp=2.

10. The total required number of modules of all types is L=2+2+1=5
(Figure 5).

Example 2. Synthesis of the sequential automaton given by Table 3,

using modules of type 4, B, and C (qo574 g¢ =3, r=3, la=4, 1p=3, [c=2) .

TABLE 3.

w5 1A el % | w (el
000 || o [lo | 0 oo 1+ | |1ll
001 [—;Tl)‘ X,(0) ||x,| 0 lxslk;l' X5 | %% | xlx
010 |f_"1 o] 1 \Ao_l'oldl-l o |11
011 || Xa(1), Xe(0) ”o] X | %) x| X, Xe ] X | x)x
100 0 ||6_|Mo_—|mlﬂl?1| 1| ot oo
T ef w el | ol
1o || %, X:(0) ” x| X0 X [ xaﬁgl_)ﬁ_ | o L;(,l}ﬁ
te |oxan. xo |x| o |7.|7.lkixs l Ko Xs },\x,
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FIGURE 7. ¢hrcuit for Fxample 1.

1. The equation system of the automaton is:

X\=As A2 A\ X+ A3 45 X3

Xo=A3 Az Xo+ A, Ay;
X3=A_3A_—2A1 E+A—3A2 Ay )?2+ Az As X3+ A A—2A_ly

Z=A3 Ay A\ X+ A3 Ay Xo+ Az Ay Xa+ A5 Ay Ay

2. The numbers of repetitions of negations of the signals A4,, 4, As, X,
X, are respectively =3, vo=4, v3=7, vy=vs=1. Thus L,=2.

3. Since k+m=4 and =2, it follows that Lc=2.

4. The ranks of the prime implicants are:

Ru=4; Ri2=3;
Ro1=3; Ry2=2;
R3;=R3=4; R33=Ra=3;
Ru=4; Rio=Rua=Ru=3.
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Thus

Gn=2; Gp=1,
Ga1=Gop=1;
G1=G3=2; Gaz=G3=1,
Gy=2; Gip=0G3=Gyy=1.

5. There are no prime implicants with G;;=3.
6. We take

G'y=2; G'z=1,
G'a1=G'p=1;

Gl3|= G/32=2; 0/33= GI34:- 1
Gu=2; Gyp=GC"33=GCG"na=1.

7. Construct the loading tables for B-modules. For the inertial
subautomata X,and X,, the tables consist of one row each (each realized by
a single B-module). The simplified tables for the inertial subautomata X;
and the output function Z are Tables 4 and 5.

TABLE 4,

(a3}
€32
€33
Ca4

- - —oc ©
—_— e 5 = -

O -2 - O
= R e I o I

C35

TABLE 5.

€a
Caz
€13

- - 0o o
-0 O —

-0 = O
O - =

Caq

8. Construct the functions

@3=(c35+Cas+ Caz) (Cas+can+€31) (Cas+C3n) (Ca3+C31) = Caa €31+
=+ C33 €32+ C35 C34 C33+ C35 C32 €3y

and

Q4= (C44+Cs13) (Caa+ Ca2) (Caa+Ca1) (Cazt g+
+C41) =Ca4 Caz+ Cas Caz+ Cas Cas+Ca3 €43 Cap

Select the conjunctions casca and caca; these are used to realize the
functions X; and Z (Ly"=2 and L,"=2).

9. Thus, Li=L,=1 and Lz=L,=2. Consequently, the required number of
B-modules is Lg=6.

10. The total number of modules of the three types is L=10{Figure 8).
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UbC 62—507:51

A.A. Kurmit

DETERMINING THE INITIAL AND COMPATIBLE
INTERNAL STATES OF THE INVERSE AUTOMATON
OF CLASS Il BY ANALYZING THE OPERATION OF
THE ORIGINAL AUTOMATON

Following /1, 2/ we introduce the concept of the inverse automaton of Class II, 1n contradistinction
to the inverse automaton of Class I defined in /5,6/. We formulate results for the former similar to
those obtained in /5, 6/ for the latter. An example 1s given.

D. A. Huffman introduced the concept of an information-lossless (ILL}
finite automaton in /1, 2/. Two classes of these automata were studied in
detail: Class I consists of automata such that the preceding internal state
and the output letter uniquely determine the input letter and the present
internal state; Class II consists of automata in which the present internal
state and output letter uniquely determine the previous internal state and
the input letter.

In /2/, ILL automata of finite order (ILLF) were defined as automata
in which the initial internal state and a finite output letter sequence
determine the original input, therefore also the second internal state.
Tests determining whether a given automaton is ILL or ILLF were
described in /1-4/. Papers /3, 4/ also describe a method for construction
of inverse automata (on the abstract level). Following /1, 2/ we shall call
the latter inverse automata of Class I, and the corresponding original
automata will be called ILLF automata of Class I.

Definition 1. An automaton will be called an ILLF automaton of
Class II if the final internal state and any finite output letter sequence
determine the immediately preceding internal state and the last input
letter.

We shall use the notation and conventions of /5, 6/, unless otherwise
stated.

Given the equalities

A=0aiQi, - - Qi B=0305,...bjp .
Then

a*=a; a;

...a *=p; by,
MUa— 'nB bJPbJP—l le
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Definition 2, Suppose that for any internal state suy< S, there is an
internal state ). S: such that for any word «' of length VMand any word =,
For which there exists »,"« 8, with the property &5, «’%) =8, there exists
a2 word a of length NV such that

Iolso o thts i)y mal e, (1

then the automaton A: will be called the automaton of Class I inverse to 1y,
and the number A will Le called the delay,

Henceforth A, will denote an ILLF automaton of Class II, and A; the
sutomaton of Class Il inverse to 4, with delay A{we assume that .1 exists).
A test verifving wheather A, is an ILLF automaton of Class Il may be

derived from the results of ,4,. Instead of the diagram of .1, one must
consider the suspended graph obtained from the diagram by changing the
directions of all edges.

In analogy with 3., . the inverse automaton of Class II may be
vonstructed in the following wayv. The internal states of .1y are all pairs
(i By where s, - S.and B 1s a word of length V for which there exist a word =
and an internal state s. = S, such that Siisy L 2i=s;., A(s/.2)=p*. Since an
ovtput sequence b, Bt (4 « ¥)and a final internal state ., uniquely determine
the preceding internal state s, and the last input lettera , we can set

Atsp by =g
S0 Py = PR (2}

where It is the final section of the word f of length V—1.

in the sequel 1. will alwayvs denote the automaton constructed in this
way.

Let Zes . pr denote the set of all internal states s, "% S, such that there
exists a word « of lengta NV with the property &(sc o a) =35 . his,), 2y —=p*.

Let s, . prdenote the set of all words =z of length V such that there
exists an internal state s, ¢« S with the property ocons2) =51, rlsy, a)y =p*.

In 5, we studied the possibilityof determining the internal states of
the inverse automaton of Class [ constructed in a way similar to that
considered here, while in , 67 we investigated the selection of an initial
internal state for the same automaton.

n this paper we shall consider the same questions for the inverse
automaton of Class II. The proofs of the lemmas and theorems, which
are essentially identical to the analogous proofs in |, 6;, will be omitted.

Theorem 1. The following condition is necessary and sufficient
for an internal state (s, .p) of the automaton . to satisfy (1}, Let a' be a
nonempty word and « a word of length \ such that there exists an internal
state 5.7« S, with the property 6&i(s...a"a2’)=s,; ; then there exist an internal
sState Siizva) s S48.B) and a word a” of length \ such that there is an
internal state 5,78, with the property &its), . a” 2 ) =s154729, 25, a7 2=

s, al’a’)

Remark. As for inverse automata of Class I, it can be shown that
for all internal states (s),. Bn(fixed $1,, Variable $5~,) the corresponding internal
state (sy 4« . P1) is compatible with (s, ). DMoreover, if B:is a word such
that 22((s1:, B1). B:) is defined, then 2:((si;472, . B1).P2) iSs also defined.




Definition 3. Two internal states siand sj;are said to be inversely
disjoint of order M if any two internal states si’ and sy’ and any two words
o’ and o’ of length M such that 81(s1/, &) =813 01 (515", ") =s1; satisfy the
inequality Ai(si, @’ )FEr(sy, ¢”).

Lemma 1. Suppose the internal states (s, Bi) and (s, ;) of the
automaton .1, are compatible s’ and s\’ are two internal states of the
automaton Ay let «; and «; be two different words of length N in which the
last different letters are in the M-th position from ihe end of the word,
such that

Si(s1iy ai) = Siis 01 (8157,a5) =S5 Ay (814, i) =Bi*, Ai(syy’s o) =B;*.

Then the internal states s’ and s are inversely disjoint of order M.

Detinition 4. Two internal states s;; and s); are said to be inversely
noncontradictory with delay N if any two internal states s;;"and s,/ and any
two words a’ and a” of equal length, in which the last different letters are
in the N+1-th position, such that

81 (81, &) = 515, 01 (815, &”) =535,
satisfy the inequality

M(siid, e’y Fh(sif, &)

Lemma 2. Suppose the internal states (su, 8:) and (s B;) of the
automaton A; are compatible, s’ and s/ are two internal states of the
automaton 4;, and oxis a word of length N, such that

818147, an) =814, 81(515’s an) =51, M (s1i's an) =Bi*, A (815, o) =B;*.

Then the internal states s’ and s are inversely noncontradictory with
delay N.
Theorem 2, Suppose the internal states (s f:)and (sy;, B;) of the
automaton A; are compatible.
Then any two internal states s,/ ¢ &(sy, Bi)and s,/ € &(s,;, B;) are
1) inversely disjoint of order M, if the last different letters of the
corresponding words a;e¢ M (syy, B:) and a; e M (s, Bj) are in the M-th position
from the end of the word;
2) inversely noncontradictory with delay N, if a;=aj.
Theorem 3. Suppose thatforany two words a;e D (s, Bi)and a; e M (s B;)
all the corresponding internal states sii’€&(sy, B:) and sy’ ¢ S(syy, Bs)are
1) inversely disjoint of order M, if the last different letters in the
words a; and «; are in the M~th position from the end of the word;
2) inversely noncontradictory with delay N, if ay=a;; then the internal
states (s, Biyand (sy;, B;) are compatible.
LLemma 3. Suppose that A; is a complete automaton, and the internal
states (sn, B:i) and (s1; B;) are equivalent. Then M (s, Bi)=M(s1; Bj).
Definition 5. The automaton A;is said to be inversely complete if
for any word « and any internal state si; € S| there exists an internal state
s1i’ €S) such that 8,(si/, o) =s1i.
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Detfinitrion 6. Two internal states s, and s,; of the automaton 4, are
said to be inversely compatible if every word 2« and every two internal
states s,;"and s such that &i(s\, &) =51 81051,/ ey =51 satisfy the equality
Fatsn ) = k(s ).

Detinition 7. Two inversely compatible internal states of an
inversely complete autormnaton will be called inversely equivalent.

l.emma 4. Suppose that 5,58, and there exist a word a of length \V
and an internal state s;;'< S, such that

s ) =5,

It ds is a complete automaton. the internal states s;,and s, are
inversely noncontradictory with delay V, and s; is inversely disjoint of
some order M==N with any internal state s,;” for which there exists a word
a” of tength V (a”=a1such that $i{s." 2"V =31/, m50 @V =k (sin2), then s and
51, are inversely compatible.

Il,emma 5. Let 4, be an inversely complete automaton. If the
internal states s,; and &, are inversely equivalent, theyv are inversely
noncontradictory with delay .

Theorem 4. Suppose that 4; is a complete automaton, the internul
3tates (s, B.) and (5,. B are equivalent, and there exists a word « of length V
such that at least one »f &8s, 2)and &/(s,, @) is defined. Then Plis),. =
Mis, B i=M and every two internal states su'< S(sn, B and ;"< S(si. Posuch that
4 single word ac< ¥ satisfies both equalities 8 isi', @) =51, 8i(s,". 2) =3, are
inversely compatible.

Theorem 5. Let ; be an inversely complete automaton. Suppose
that Wis,. B =Wis,. =M, and every two internal states s;;"<Z(sy, p:) and
$3. = Z(s:..B) such that a single word 2« 2 satisfies both equalities 6:(s, . 2=
=3 . &its, ay=s.are inversely equivalent; then the internal states (s, p;)and
(5. p.) are compatible,

Example. Let A=¥={0. I}, and let the automaton 1 be given by a
table of transitions and outputs (Table 1).

TABLE ..

o |

! 0

i [ I l 0 I
a 5,0 ¢, 0 e £, 0 h, O
b ¢ a, t I g 0 e, I
« — Lo g 4t _—
d —_ g1 h g d, 1

It can be shown that A4,is not an ILLF automaton of Class I, but rather
an ILLFE automaton of Class II with ¥=2.

For further analysis, it is convenient to draw up a table of internal
states and outputs of A (Table 2).

Using this table. the table of transitions and outputs of the automaton
Az is easily set up {(Table 3).

Problem 1. To find all admissible initial internal states of 4,, given
that ¢ is a final internal state of A




Clearly, if si; is a final internal state of A, the conditions of Theorem 1
are satisfied by all internal states of Ay of the form (éi(si, @), (Ai{s1:, @)), where
% is an arbitrary word of length N. In our case these are (g, 00) and (e, 10).
It is clear from the internal-state table of 4, that the conditions of
Theorem 1 are satisfied by the internal states g and A. Since Dt(g, 11)={g, h},
it follows that the role of the initial internal state of A, may also be played
by (g 11).

TABLE 2.

TABLE 4

(4, 01}, 1 f (c, 00), 1 (c, 01}, 1
— . {e, 10}, 0 —

(6, 01). 1 : (5, 00,0 | (£ on, 1
- : — (h, 01), 0

(h, 01). 1 , @ 10), 1 | @ 1), 1

(@ 1.0 || (e, 10), 1 —

(f, 01), 1

Problem 2. To find all pairs of compatible internal states of A;.

Examination of the set S; immediately shows that the following are
pairs of inversely disjoint internal states of A;,, of order 1:(a, b); (a,¢); (a.]);
(a, h); (b,d); (b,e): (e,d); (c,e); (d,f); (d h); (ef); (e.h), while the pair (b, g)is
inversely disjoint of order 2.

Apart from the pairs of inversely disjoint internal states of order M=\,
the following pairs are inversely noncontradictory with delay N=2 :(a, )b, [);
(¢, 8); (¢, A): (g, h). This can be established by examining the internal-state
table of the automaton A;. Consideration of the sets (s, B:) and S(s,;. B:) and
the above pairs of inversely disjoint and inversely noncontradictory internal
states of A, shows that the following internal states of A; are compatible

Ay [(a, 10), (b, 01)]; [(a, 10), (¢, OI)]; [(a, 10), (e, 10)]; [(a, 10),
(f, OO [(a, 10}, (&, O)) (6, O1), (¢, GO)L [(&, O1), (7, OL)];
[(6, 01), (g, 10)]; [(e, 00), (c, OL}f; [(c, 00), (f, OL)]; (e, 00),
(g, 00 (e, 00), (A, O], [(c, O1), (g, 10)]; [(c, OL), (A, OL)}
I 01, (g 10)]; [(g, 10), (A, O1)].
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A A . Kurmitl

FINDING THE INITIAL INTERNAL STATES OF THE
INVERSE AUTOMATON BY EXAMINING THE
OPERATION OF THE ORIGINAL AUTOMATON

It is shown that an 1nternal state of the inverse automaton can play the role of the initial state
if and only if, after output of the word characterizing the state under consideration, the corresponding
internal state of the original automaton passes into internal states in a defimte way related to the
initial 1nternal state of the original automaton,

Consider two partial Mealy automata A;and Az, with the following
alphabets of internal states, inputs, and outputs:

Si={s11,..., 81}, A=y, ..., am}, B={b1,. ... b},
So={sa1, ..., Sansfy B={by, ..., 0}, A={ay, ..., am}

and the following output and transition functions:

M(su, a5} =bj, bi(s1s, @5) =51, Aa(Sa1, ba) =ay, 62(s21, by) =52y,

S $15,€ S1, S2iy $2,€ 82, @, @y € U, b, by, €D,

We assume that for any pair (si;, a;) or (s, b;) the transition function and
the output function are either both defined or both undefined.
The letters « and B (with or without primes and/or subscripts) will
denote words on the alphabets Hand B, respectively. The functions i and
8:(i=1, 2) are defined in the natural way for words on the alphabets « and 3.
Definition. Suppose that for any internal state sii €8)there exists an
internal state sz € Sz such that for any word o’ of length N and any word a there
is a word a” of length N with the property

A2(szj, Mi(si, aa’))=o"q, (1)

then the automaton A; is said to be inverse to the automaton A, and the
number N is called the delay.

Remark 1. If A,is an initial automaton, it suffices to require that a
suitable sz;, exist for an initial internal state si,.

Remark 2. Use of the notation Ai(si, a)(similarly for A 6. 62),
always implies that the function is defined for the pair (si;, «).




For a given automaton 4,, the existence and construction of the inverse
automaton and determination of the delay were studied in /1, 2/.

In /2/, the automaton 1; was constructed as follows. The internal states
of Ay are all pairs (s, 3), where s, ¢ §, and B is a word of length .V such that
there exists a word a for which n(s;ia)=§.

Suppose that the automaton inverse to 4, with delay .V, exists; sunpose
further that we know an initial state s;, and an output sequence B b;(b; €¥)of
length V+1 emitted by :he automaton A; when the latter starts from the
internal state s;.. Then the first letter a, entering the input of the automaton
A is uniquely determined. ‘

The following are therefore well defined:

ballsie B 6 =a; . 82((s10 B). b)) = (8ils1,, @), B75,). (2)

where f’ is the final section of length N—1o0of the word 8.

This automaton A: is inverse to A, if and only if for every internal state
of A there exists an internal state of A, satisfying (1) (see also Remark 1).

However, no simple criterion is given in /2/ to determine when this
is possible and how to choose the corresponding initial internal state of .,
(of course, the problem may be solved by simply checking all internal
states).

This problem is the subject of our paper.

Let (s, B)denote the set of all words a such that (s, 2)=8.

Theorem. An internal state (s, B)of the automaton A, satisfies (1) if
and only if for every word o’ and every word «” of length ¥Nsuch thathii(si., a'a”)
is defined there exist a word dge~€ M(s1;,B) and a word a”’ of length N with
the property

M(B1(s15 Ggram), '@’y =k (51, 2'a”). (3)

Proof. Sufficiency. If the condition is satisfied, equality (3)
implies

At (S|j, a,;,'a’cz.'”) =ﬂ M (Sli, a’a”). (‘4)

By construction of the automaton Asz:

A'?((slir A"(slir a:’z’))v A (51 (slir Caz”), 0.'(2'”)) =a,,'a»a'. (5)
or, in view of (3):
A2((s1j, B), M1 (515, @'a”)) =apgra’ . (6)

This proves that (1) is true.

Necessity. Let the internal state sy=(s;, B)satisfy (1). Assume the
condition of the theorem false, i.e., there exists a nonempty word «’ and a
word a” of length N such that for any word a € (sy;, B) and any word a” of
length ¥

A (81 (515 @), @’'a”)E M(s, & a”). (7)
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We consider two cases.
Case 1. Thereexists aworda” of length N and words a ¢ M(sy;, ) and
o’ (o’ #a’) such that

M(81(s1y, @), a/a” ) =A(s1;, a’a”). (8)

Then, by (2) we have

e ((Sij B)s Mi(s10, @'a”)) =aa/’Fa o’ . (9)

Case 2. There are no words o, &, and o satisfying (8). Then
Ao ({815, B), Mi(s1i, @’a”)) are not defined.

These contradictions prove the theorem.

It follows from the proof that for all internal states of the form (51, )=
(fixed si;, variables B) the corresponding internal state (81(s1j, oturar}, B1)is
compatible with{(si;, p1). Moreover, if A ((s15, B1), B2) is defined for some
word B2, then 22((81(s15, @uar), B1), B2) is also defined.

If A»is a complete automaton the above internal states (si, fi) and
(81(s15, @a’ar ), B1) are equivalent.

Example. Let Si={a, b. ¢, d, e. |, g A}, A= BB={0, 1}, and define the
automaton A, by Table 1.

TABLE 1.

b, 1 ¢, Q A, 1

f.0 ¢ 1
d, 1 el e, 0
5,1 g0 f.1

The inverse automaton 4,, constructed by the method of /2/, is then
given by Table 2.

TABLE 2,

(a, 01) (¢, 10), 1 (¢, 1), 1 (e, 01) (¢, 10, 1 (c. 1), 1
(a, 10) (6,00),0 (5,00),0 (e, 1) (h, 10},0 (th, 11),0
(6, 00) (f, 00}, 1 (a,01),0 (f, 00) (5,00), 1 (b.0l), 1
(b, O1) (a,10),0 (. 11),1 (f, 11) (¢, 10),0 (¢, 11),0
(c, 10) (d, 00),0 (e,01), (g, 00) (d, 00), (e,01),0
(e, t1) (d,10),0 (e, 113, 1 (g,01) (d, 10}, 1 (e, 11),0
(d, 00) (g, 00), 1 (g, 01}, 1 (h, 10) . 00),0 (a,01), 1
(d. 10} (b, 00),0 (6,01),0 (4, 11) (a. 10),1 (f,11),0

Problem. To find all internal states of A2 which can be initial states,
if the initial state of the automaton A;is a.

* s is any internal state of A;for which we require an internal state of Az satisfying (1),




The condition of the theorem must hold for those internal states of 1;
such that the first element s, satisfies 8,(s;.. «)=a with some word a of
length V(=2). Examination of the transition table of A, easily shows that
these states are a. d, e, and f.

We can now say that any of the following internal states can be initial
states: (a, 10): (d, 10); (e, L1} (f,00).

Since the internal states (e, 01) and (e,0l) are equivalent, as are ({a. I}
and (4. 10), it follows that the first element sy; of an initial state of 4, may
also be such that 8 (s;;.a1) =d and §,= (s};, az) =¢ for some words a; and a2 of
length 2. As before, it turns out that the appropriate internal states of 4,
area, d, e, and f. The corresponding set of internal states of A, is: (a, 0l);
d, 00); (e, O1); (f. L1).

Though our theorem somewhat reduces the necessary amount of
checking, the process is nevertheless quite laborious, as is evident from
the example.
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T.A. Franisis, G.F. Yanbykh

AUTOMATIC ERROR CORRECTING IN
DISCRETE AUTOMATA

Self-correcting codes are applied to synthesis of asynchronous logical automata by the method of error-
correcting inertial subcircuits.

INTRODUCTION

Reliability of operation is one of the most important properties of any
automatic device. However, high-reliability automatic devices canunot
be constructed from elements of limited reliability unless redundancy is
introduced.

In this paper we consider the introduction of redundancy based on the
application of self-correcting codes, suitable for electronic discrete
binary finity automata.

There are two approaches to the evaluation of reliability /1/:

1. Reliability is defined as the probability of failproof operation of the
entire automaton for given failproof probability of its component elements.

2. Reliability is defined as the maximum admissible number of simul-
taneously faulty component elements. Conditions governing faults inthe com-
ponent elements may be either specific (listing the component elements in which
faults are allowed), or general (specifying the number of elements in
which occurrence of faults does not affect operation of the automaton).

The only difference between these approaches is methodological, for the
failure of some number of component elements is intimately related to
the probability of this event, in other words, the latter is an estimate for
the former.

The first approach is suitable for the general description of an automaton,
since, knowing the failproof probability, one can compare the reliability of
various devices.

In automata synthesis, the second approach is more suitable. Given the
required reliability of the automaton, the reliability of the component
elements available for the synthesis, and the functional circuit of the
automaton, one can determine the total number of elements, or the specific
elements, in which faults should not affect the operation of the automaton
as a whole. M. A, Gavrilov has considered correction of two types of
errors:

1) The relay remains closed even though the winding is not energized.

2) Contacts remain broken even though the winding is energized.




In general, this ccrresponds to the appearance of a signal "one"
instead of "zero' (or vice versa) at the output of the component clement.
In multistage automata one must distinguish between two types of errors —
failures and malfunctions. By failure of a component element we mean a
state in which no change of input signal can affect the output signal; if the
signal at the output of the faulty element is "‘one, ' we say that the element
is short-circuited; converselv, if the output is "zero, ' we say that it is
open-circuited. By malfunction we mean a situation in which a component
element produces the wrong signal at some stage of the operation of the
automaton. In the sejuel we shall use the term "'error'’ for both types,
unless explicitly stated otherwise.

We make the following assumptions concerning errors in component
elements:

1) An error in one component element at some instant is independent
of errors in other components at any instant of time.

1} A malfunction in a component element is independent of previous
malfunctions in the same element.

In other words, faulty operation of some component element does not
affect the normal operating conditions of the other elements, the source
of the fault is to be found in the element itself.

In such a situation we shall use the term s-fold error to mean a
simultaneous error in the operation of s component elements.

Every automaton is characterized by its set of input signals X, set of
output signals Z, set of internal states @, a transition function ¢ and an
output function f. Any automaton may be constructed from functionally
complete elementary automata, with two internal states corresponding to
two distinct output signals ;2,, and logic circuits which realize the
transition and output functions.

The component elements we shall use are illustrated in Figure 1. In
linking these components one must avoid any direct connection between
the outputs of two or more elements. Such a connection may be made
only through another element.

Every automaton satisfies the relations

Qlt+7) =¢lQ (). X(1)];
Z(t) =flQ(n. X(B],

where X(f) is the input signal at the instant £, Q({) the internal state at the
instant ¢, Z(f) the output signal at the instant £, and Q(f+7) the internal state
at the following instant f+7.

In this paper we shall restrict ourselves to svachronous automata, in
which the input signals. which are pulses. can appear only at fixed intervals

of tength T.
The transition function of the automaton is determined by the excitation

functions (or transition functions) of the elementrary automata Q;:

Qi(t+7)=Flg:(O)}; {1)
q. (&) =¢fQi(t), Qz(8), .., Qu(¢), X(B)], (2)

where i=1, k, k being the number of elementary automata.
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C
FIGURE 1. Component eiements of the automaton:

a — AND-element; b—OR-element; ¢ —addition mod 2;
d — NOT-element; e — elementary automaton; f — delay
element, with time delay T; g - two-input trigger(l —
“one" output, 0 — "zero” output); h — complementing
trigger; 1 — threshold element, with threshold %; j —
gate (C — control signal),

The form of the function F in (1) depends on the internal structure of
the elementary automaton; in general, each elementary automaton is
specified by a transition table.

The functional circuit of the automaton may be divided into two parts
(Figure 2):

1) A circuit conveying information about the internal state of the
automaton, consisting of elementary automata.

2) A circuit realizing the logic functions, consisting of logic elements.

The latter in turn may be divided into

a) a circuit realizing the output function, and

b) a circuit realizing the transition function (excitation functions of
the elementary automata).

This subdivision facilitates the analysis and synthesis of the circuits,
since the probabilities of errors in an elementary automaton and a logic
element are often quite different. Moreover, faulty operation of the
circuit realizing the transition function entails faulty operation of the
elementary automata. Consequently, from this standpoint we shall regard




the elementary automaton and the subcircuit realizing its transition function
{assuming that transitions occurring in different elementary automata are
independent) as a single internal subcircuit, in which an error in a logic
element is equivalent to an error in the elementary automaton.

¢ e e 7 ___j
z l
— |
X ‘
IyadeT [P, r 7
o I i | i
I | 91 | Qg l 1 QA’ i
y [ | | | |
H————————
' ! y I |
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i i | I i
Eecre =i em)
FIGURE 2, Block dinaram of a discrete dutomatog:
I — memory circuity I - logic cireuit;  Z — output circuit;

¢, — transitior (excitation? function circuits Q; — i-th elementary
iutomaton; Py—i-th wnternal subctrcuit,

The reliability of the output function circuit is of particular significance,
since it clearly imposes a limit on the reliability of the automaton as a
whole. If the output circuit is constructed from logic elements of types
AND, OR, NOT, its reliability is determined essentially by the reliability
of its output element with respect to errors of the above types. The output
circuit must therefore incorporate measures aimed at improving the
reliability of the logic elements themselves, as suggested, for instance, by
Yu. A. Kosarev ;3/.

Another method is 1o employ gate elements, which allow the passage of
a signal "one' only in the presence of a control signal /4/. Possibly errors
in a gate are:

1) short circuit — a signal "one'
signal;

2} open circuit—a signal "one' cannot pass the gate, despite the
presence of a control signal.

'is emitted in the absence of a control
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Since there are no restrictions on connections between the outputs of
gates, the outputs of all redundant gates may be connected directly to the
load. The situation is thus more analogous to that in devices employing
electromagnetic relays than to that in circuits of AND, OR, NOT elements.

2. APPLICATION OF SELF-CORRECTING CODES IN
CODING THE INTERNAL STATES OF A DISCRETE
AUTOMATON

We identifv each internal state of the automaton with the corresponding
set of internal states of the elementary automata (. encoded in binary
digits 0, 1, forming a sequence of length k:

{aib= (a1 aa, ..., ay),
where

Regarding 0 and 1 as the elements of the field of residues mod 2, we can
define addition of sequences of length &

{aih +{bj={a:+bih

and multiplication by a field element ¢

clay ={c at,

and thus the internal state of the automaton is characterized by a vector in
a vector space over the field of two elements 0 and 1, the dimension of the
space being given by the number of elementary automata.

The development of the theory of error-correcting codes (we mention
Hamming /5/ as one of the first papers in this connection) has led to
applications aimed at improving the reliability of discrete automata. M. A.
Gavrilov has proved /1/ that a necessary condition for reliable operation of
a multistage relay device is that every two stable states must differ by at
least d single transitions, where d is defined by the inequality

d=2s+1, (3)

s being the number of admissible simultaneous errors.

Regarding the encoded internal state as a vector, it is easily seen that d
is the minimal code distance (in the sense of Hamming) for the correction of
s single errors. R.R. Varshamov /6/ has found an expression relating
the number r of additional parity-check symbols and the number k=n—r of
information symbols to the minimal code distance d:

251+ (’ZT‘)+(”;’)+.A+(Z:;)\ (4)




Procecding to the svnthesis of a redundant automaton, we must use (4},
siven T and J, to find the number » of elementary automata that will ensure
the given number of nternal states, the code distance between which is o,

Fxample 1. Consider syvathesis of an automaton with one 1nput ind
one output, given by the following truth table:

UABLE

Z | " i

T
X ‘\\\ - ’ 0 |
3] kl 0 I Q

| |

|
t & 1 [ 0

As the elementary automaton we use a delay element, and the logi.
circuit is constructed from elements of types AND, OR, NOT. The
excitation function of the delay element is given by Table 2, 2,

The automaton clearly consists of one delay element and a logic circuit
realizing the transition function according to the truth table of the automaton
and the excitation function of the delay element {(Table 3); this circuit is
iltustrated in Figure 3a.

TA3LE =
q(t) Q) Q(t+1)
0 0 0
Q 1 0
i 0 1
1 1 I

Now suppose that the same component elements are to be used in the
svnthesis of an autematon realizing the same table with correction of single
errors in any one coraponent element of the transition circuit. By (3) the
distance between any two internal states of the automaton must be at least
d=3, In this case, the inequality (1) clearly implies that the internal states
of the automaton may be designated by the vectors 000 and 111, i.e., we
employ a (3, 1) code. The truth table and excitation functions of the
resulting automaton are illustrated in Table 4.

Table 4 implies that the excitation functions and the output function are:

gr=gr=gs=g=XQ3Qz+ XQsQ, + X0, Q, (5)
and

Z=Q;3Q2+ QsQ1 + Q1 Q2. (6)

By (5) the excitation functions are the same for all elementary automata.
This is always the case when the synthesized automaton has only two
internal states and the excitation function of the elementary automaton is
that given by Table 2.
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The resulting automaton is illustrated in Figure 3b.

Obvicusly, all single errors in elementary automata (by elementary
automata we mean delayv elements and NOT-elements) are corrected in this
automaton. The operation of the automaton under various single errors
in elements of the logic circuit is illustrated in Table 5. The first column
of the table indicates the faulty element (the subscript is the index of the
element in Figure 3b} and the type of error (subscript 0—open circuit,

1 —short circuit). The second, third, and fourth columns indicate the

values of the output function at the instants f. f+1 and fh+2v, respectively,
The errors are assitmed to occur at the instant #, when the automaton is in
atate zero and ''one'' is applied at the input; it is also assumed that a single
error in the logic circuit entails no errors in the operation of the elementary
automata. Incorrect values of the output function are indicated by bold type.

(7?;

ANDL ANDE, ANDE

TABLE 5.
to to+t i fot-2t
Type of error X
1 ’ 01 . 01
z
N errar
0 1 0
annd, ANDY, AND? 0 | o
ANDE, ANDY, anp | 0 | i
onl | 0 o | o
ort | 0 1 | 1
anpdanpd avo! | 0| 1 0
ORY [ o | 0 0
l l
| |

The automaton circuit of Figure 3b is applicable only when the probability
of error in an elementary automaton is greater than that of error in a logic
element.

To improve the rzliability of the transition circuit without having to
improve that of its elements, the excitation function of the elementary
automata must be organized in as independent a manner as possible.

To improve the raliability of the output circuit, the above-mentioned
gate-type elements may be used. Equation (6) may be rewritten in the form

Z=Q(Q:+ Q3) +Q:2Qs, (6a)

according to which the gates form the circuit illustrated in Figure 4.
Signals from the corresponding elementary automata are applied to the
control inputs of the gates. The gate inputs receive the input current from
the load connected to the output of the circuit. Construction of gate
circuits from transistors was discussed in ;7/.
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The automaton synthesized in Example 1 is quite trivial; nevertheless,
it completely characterizes the method for synthesizing redundant automata
and reveals various features of this method.

Example 2. Let us construct a decimal
counter, counting pulses in increasing order
9 @ of binary numbers from zero to ten. On the
M elementary automaton we employ a two-input
e trigger. The excitation function of this type
of trigger is given in Table 6 /2/.
The truth table of the required automaton
@ is given in Table 7. We have used the
A abbreviation gi(¢{}=0 for gu(f) =1, qu(¢)=0, and
gi(t) for gw(t)=0, qu(t)=1. By Table 7, the
excitation functions of the elementary
FIGURE 4, Gating 1n output circuit. automata are:

Gro=XQ\Qu:
gu=XQ2Q:Q4;
G20=XQ2Q3Q4;
g2 =XQ:Q3Q4;
qso=XQaQ4§
1731=X616:;Q4;
Gro=XQ4/
ga=X0Qs.

The synthesized decimal counter is illustrated in Figure 5. Delay
elements, with delay 6 exceeding the durationof the input signals. are needed
to prevent undesirable competition.

TABLE 6.

90(1) Q(t+1)

The counter is to be synthesized with correction of single errors in the
component elements of the transition circuit. By (4), for k=4 and d=3 we
have n=7, i.e., (7, 4) code.

Since the numbering of the separate output functions in the logic circuit
is immaterial, we shall regard the first 2 symbols of the code vector as
information, and the remaining r=n—% as parity-check symbols. The
internal states, encoded in this systematic (7, 4) code, yield vectors which
form an orthogonal parity-check matrix H/8/:
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QHT =0 (8)

Aceording to (§). the paritv-check inputs of the elementary automata are
determined by the re ations
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where h;; is the element of the matrix H in the j-th row and the | -th
column. In our example

1101100
H=[1011010] (9)
0111001

After computing the code vectors of the redundant (7, 4) code, we can
set up the truth table for a redundant decimal counter (Table 8). To save
space, the table has been constructed for error-free performance of the
automaton. To represent single errors in the performance of the
elementary automata each row of Table 8 must be replaced by 8 rows.

As an example, consider all possible single errors in the states
(0000000) and (0001111) (Table 9).

Computation of the transition functious of the separate elementary
automata is extremely complicated (Tables 8, 9). It is therefore more
convenient to begin by determining the corrected values of the information
symbols and to use these alone as the input variables for the transition
and output circuits.

FIGURE 6. Methods for constructing the logic circuits of a redundant
automaton:

a — using the states of all the elementary automata as input variables;

b — using the corrected values of the states of the information elementary
autornata as input variables; Z — input circuit; D — decoder circuit;

Q ~ memory circuit; ¢ - excitation-function circuit.

Block-diagrams illustrating the two procedures are given in Figures 8a,
b. It is clear that when the second method is used the decoder must operate
at a high reliability. If necessary, this may be achieved by increasing the
reliability of the component elements themselves. Synthesis of a decoder
is described in /9/, which also gives an example for (7, 4) code. The
excitation functions of the elementary automata are, according to Table 8:
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FIGURE 7. Redundant decimal counter using a decoder circuit (D) (Example 2).




q10=XQ Qs+ X1 Qs+ X Q1 Qs+ XQ2Q5Qs,
g =3Q Qs+ XQ:Q3Qs:

gon=X Q03+ XQ02Qs + X Q2Q:Q4;

421 =YQ1Q:Q3+ XQ1Q:Qs + XQaQu:

Gao= X Q304+ XQ3Q++ XQ,Q:Q5;

qa = YQiQuQs+XQ:Qu
Gao=YQ1Qs+XT:Qu;
gu=XQ Qs+ XT,Q4

Ji0=XQ2Q3Qs + XQ1Q:Q4 + XQ,Q:Qx:

G =X002Qs+ XQ1Q:Qa+ ¥ Q1Q:Qs:
gor=201Q3Q4+ XQQ2Q3+ XQ1Q2Qu

g1 =2Q;Q3+XQ,Q:Qs;

Gr0=3Q, Q05+ XT1QQs + ¥Q:Qs01 + Q1 Q:Q;
gn=3QuQsT4 + XQ1Q2Q4 + X¥Q2Q5Us.

The synthesized circuit is illustrated in Figure 7.

3. REALIZATION OF THE EXCITATION FUNCTIONS
USING MAGNETIC DECODERS

When AND-, OR-, NOT-elements are used as component elements, the
logic circuit of the automaton becomes extremely complicated. Some
siumplification is achieved by using magnetic-core decoders. We shall
consider a magnetic-core decoder for direct and inverse code, which we
call a decoder of the first type and denote by DC1.

The signals of the 2lementary automata are applied to the inputs of the
DC1, and every combination of input signals, i.e., every state of the
synthesized automaten, has its own output. Suppose, for instance, that
three triggers are used as elementary automata (Figure 8) (the notation
for the coils follows ;10/), and that it is required to distinguish between
the states 010 and 001. Both outputs of each trigger are provided with
magnetic cores. The cores of the ''zero' output are threaded in accordance
with the direct code of the automaton state,

The cores of the "one' outputs are threaded in accordance with the
inverse code. Buses corresponding to the direct and inverse codes of each
state are connected in series. On the appearance of a clock pulse (CP) an
emf is produced only in the windings of the bus corresponding to the given
state. An inverter is used to produce the signal at the corresponding
output. Figure 8 illustrates the state 010.

In redundant autoraiata the DC1 may be used to determine the internal
states, taking all admissible errors of the elementary automata into
account,

Example 3. Agpplication of the DC1 to the decimal counter of
Example 2.

In this case (see Figure 9) there are 8 buses in the DC1 for each row in
Table 8, i.e., one bus for each row of Table 9. All 8 buses are connected
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via an OR-element, whence a signal is fed to the elementary automarta,
where it records the code of the next state. If we denote the signal at the
output of the DCL for the i-th state by yi, Table 8 vields:

Gu=tht ity sty tystysn )
Jii=U7-+Us
Gu=ts+ Y1+ y2tyrtys-tys
G =tz ys+ys+Yst
Guo=yo+Us+ s+ Y+ ys+yo
goo=pt e+t s,
Goa=H+tat+u-+Uur+is;
Jey =Y+t Us+ st
Ggo=th it yet st Ul
gua=tht+ U+ ys+ts+Urn
i = o Us+ ety el
Yoy = g+ Uy == 1y + 15+ e
g lis s U el
Gri=toF P+ st
Zo =it
2. =i+ u+usttin
Zy = a3+ Us+Un

=Y Uy U .

(ry

FIGURE & Deceder of the first type DO (CP — clock pulsest.

The automaton (see Figure 9)doesnot correcterrorsinthe NOT- and OR-
elements at the outputs of the decoder. Errors in the OR-elements at the
trigger inputs, open or short circuits in the magnetizing coils, and failures
in individual cores (e. g., mechanical) are equivalent to errors in the
elementary automata, and can therefore be corrected.

The number of coils may be reduced by using a decoder with load sharing
and voltage addition, proposed by H. Takahasi and E. Goto, 11,, with a
threshold element at 2ach output,

o
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FIGURE 9, Redundant decimal counter using DC 1 (Example 3).




We shall call this a decoder of the second type, DC2,

The number of cores in the DC2 is equal to the number of elementary
automata {see Example 4). The number of outputs corresponds to the
number of internal states of the automaton. The circuit of each output is
formed by threading the cores in the direct or inverse direction, according
to whether the corresponding component of the state vector is one or zero.
When a clock pulse is fed through the core, a direct or inverse current is
produced, depending on the state of the corresponding elementary
automaton. A positive emf +e is induced in the output coils if the direction
of the current is comrpatible with the connection of the coil, and a negative
emf —~e otherwise. As a result, the maximal signal appears at the output
corresponding to the given state of the automaton. If all the elementary
automata operate without errors, the resolution po of the DC2 is 11,

1
Po= e {12a)
where n is the number of elementary automata (code length) and d the code
distance.
If errors occur in ¢ of the elementary automata, the above factor is
obviously reduced to

n—2s .
= TodE s (12b)

The code must be selected with an eye to a value of ps high enough to
ensure practical realization of threshold elements with the given resolution.

. . s n .
Thus, for instance, eraploying codes with code distance d= —-, obtained by

2
means of orthogonal matrices (Hadamard matrices) 12, one can take pe=x
d p.= n—12s
and po= —5¢

The selected value of p, depends on the magnitude of the noise present
in the circuit actually used.

Example 4. Let us apply a DC2 to the redundant decimal counter of
Example 2. By (12b),

_7-2.1
=79 3731

-2
-

. 5 . .
Suppose this value ¢yi= =5 is satisfactory. Consequently, the threshold

element at the output must have threshold n=3¢. Since each output of the
DC2 corresponds to one internal state of the automaton, the excitation
functions of the elemertary automata and the output functions are again
given by (11), where the y, now denote the signals at the outputs of the
threshold elements.

The resulting circuit is illustrated in Figure 10,

An automaton incorporating a DC2 corrects all single errors in the
elementary automata and all errors equivalent to these (as in Example 3).
It does not correct open circuits in the output coils and errors in the
threshold elements.
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The reliability of the automata synthesized in Examples 3 and 4 may be
improved by using magnetic-core threshold elements as elementary
automata. There is then no need for input OR-elements, which are replaced
by the write winding.

Magnetic decoders seem especially promising with regard to the
development and extensive production of ferromagnetic tapes and perforated
ferrite wafers. As for the outout circuit, this employs the same methods
as in Example 1.

Another example will provide a further indication of the possible
applications of these decoders.

Example 5. Consider the synthesis of a two-input serial adder using
a two-input trigger and AND-, OR-, NOT-elements. Table 10 illustrates
the form of the truth table for a nonredundant adder (see, e.g., /2/).

TABLE L0,

X9 Qt+%)

S
=3
=

——_O O == o
—, OO~ O~
————_—D 00O
- 1-1-)
DO O -
———O -~ OO O

By Table 10,

G1=XXa+ X,Q+ X,Q;

40=51=X1X2+1\71Q—+726; (13)
Z=X,XoQ + X1 XoQ + X1 X,Q + X1 X2Q.

The resulting circuit for a nonredundant serial adder is illustrated in
Figure 11.

FIGURE L1, Serial adder (Example 5).




To permit correction of single errors in the elementary automata, the
internal state of the adder must be encoded, as in Example 1, in (3, 1)
code.

The transition function of the redundant automaton is then as described
in Table 11,

To determine the actual state of the automaton, i.e.. to correct a
single error in an elementary automaton, either ot the above-mentioned
decoders may be used. The excitation functions of the elementary automata
are

Gi=g0=g="5112+X,Q + X20;
qu=gn=4g5=XX2+ X,Q+X:Q,

where @ and Q are the decoder-output signals corresponding to the states
"zero' and "'one'', respectivelyv, of the automaton.

It is clear that the excitation function is the same as that of the
nonredundant automaton (13).

Depending on the reliability of the logic elements in comparison with
that of the elementary automata, one either emplovs one transition circuit
for all the elementary automata or provides each of them with 1ts own
independent circuit, as indicated above.

The redundant adder is illustrated in Figure 12. Its output circuit is the
same as that of the nonredundant adder.

FIGURE {2, Redundant serial adder using a Jocouer vExample 3

Z - ontout circuit; N0 — decader,

Decaders are alsc conveniently used to determine the information
symbols of the input signal in cases where the input signal itself is already
redundant.

Example 6. <Consider the synthesis of a two-input serial adder, with
the input signals encoded in (5, 2) code.




TABLE 11.




After the information syvmbols of the input signal have been determined
by the decoder DC, (see Figure 13) and the information svmbol of the
internal state by décoder DC_, the output function and the excitation
functions are: -

G = 0+ 12Q +11Q + Qe
Gr=10:Q+psQ + y:Q + 1, Q:
Z =00~ u,Q+u:Q+y,Q.

where v, is a signal at the output of DC, corresponding to an input
information svmbol (i is the decimal representation of the input
combinationt; Q. Q are the signals at the output of DCO.

T 1 1 )i
1T T [N R _{_

L 2 1 1134
Q.o.--o-oo.o--.-oon.--..

T
117

., & O & S

SIGURE tu, Redundant serial adder tor the «ase of an input <iznal represented
M Cerreeting oode LExample B U — decodery,

4. MULTISTAGE ERROR-CORRECTING METHODS

In systems for which speed does not play a decisive role, cyclic codes
are suitable for encoding the internal states of an automaton. Errors are
then corrected during the time interval between two consecutive
performance cycles of the automaton. Using n subcycles (where n is the
tength of the internal-state vector), the code vector is corrected by the
correcting circuit, ard by the beginning of the next performance cycle the
automaton is already in the corrected state, if the error in question is a
malfunction. The cyclic character of the code simplifies the correcting
circuit. On the other hand, failures cannot be corrected by this method.

Example 7. Let us use a cyclic code to encode the internal states of
the decimal counter considered in Example 2 to 4. To store the internal




states of the automaton we use a shift register, formed byv connecting
elementary automata in series.

The elementary automaton may be either a trigger with separate input
OR-elements and a delay element whose function is to prevent simultaneous
application of input and shift pulses to the trigger, or one cell of a two-stage
magnetic-core shift register. Since there are four information symbols, we
use the cyclic Hamming (7, 4) code generated by the polynomial x+x24-1.

The parity-check matrix is

(14)

This parity-check matrix may be constructed from adders mod 2
(Figure 14); a signal appears at the output of the matrix whenever a single
error occurs in the automaton /13/. This signal proceeds to the shift-pulse
generator (SPG) and produces 7 shifts in the shift register. When the
combination 001 appears in the output buses of the matrix, the faulty symbol
is corrected at the next stage by addition of one mod 2. As in Example 2,
the output and transition circuits use only the values of the information
symbols as input variables.

Note that this case is slightly different, for the matrix (14) differs from
the matrix (9) in the position of the third and fourth columns. As a result,
the positions of the variables Q; and Q. in equations (10) are interchanged.
The time interval between two input pulses must be sufficient to allow for
7 shifts in the register, if necessary.

Here the delay elements in the feedback circuit of the automaton
(Figure 4) have been replaced by AND-elements whose second input
receives a timing pulse (TP) after the error has been corrected.

If one must allow for malfunctions in the register in the course of the
parity-check shifts, one or more additional checks must be provided. To
this end, one may either reduce the frequency of the input signals, i.e., the
performance cycles of the automaton, or increase the frequency of the shift
pulses.

To lessen the influence of malfunctions in the course of the parity-check
shifts (especially if the shift register contains a large number of elementary
automata), the parity-check matrix should be replaced by an error-detecting
circuit which divides the state vector by the generating polynomial, together
with a decoder at the output (Figure 15). The decoder may be either DC1
or DC2. The division circuit is conveniently constructed from elementary
automata in the form of magnetic-core shift-register cells and adders
mod 2.

Using a pulse distributor P, signals are fed into the division circuit
successively from all the elementary automata.

If the sequence characterizing the internal state of the automaton is not
divisible by the generating polynomial, i.e., an error has occurred, the
faulty symbol in the sequence may be determined according to the remainder
and then corrected.

To this end, the parity-check shifts are followed by a signal which feeds
the contents of the division-circuit cells into the decoder. The output and
transition circuits in Figure 15 are the same as in Example 7.
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In this automaton, as before, the input signal may be changed only after
the error in the current internal state has been corrected. The remainder
proceeds from the division circuit to the decoder after appearance of a
signal A.

The need for a decoder at the output of the division circuit may be
avoided by using a shift register with a unit in one cell as distributor.

The shift register of such a distributor contains as many cells as there
are elenmentary automata. After the internal-state vector has been divided
by the generating polynomial and the remainder obtained, shifts occur in
the distributor and the division circuit until the signal 001 appears at the
output of the latter. The position of the unit in the shift register of the
distributor indicates the elementary automaton in which the error has
ogeurred.

CONCLUSION

[t is clear from the examples considered above that in each specific
case the method emploved for encoding and decoding the internal states of
the automaton depends on the relative reliabilities of the memory elements
and the logic elements. When the reliability of the output circuit is
inadeguate, the reliability of its elements must be increased by some
method, and the circuit itself constructed from gate elements.
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T.A. Frantsis

ERROR CORRECTING IN ASYNCHRONOUS AUTOMATA

This article discusies the anplication of self-correcting codes for svnthesizipy asvachronsus togical
astomata by the method of inertial subcireniss, with correcting errars,

In /1, 2/ we considered the application of self-correcting codes to
improve the reliability of single-stage and multistage synchronous automata.
In the present paper self-correcting codes are used for correction of single
errors in asynchronous logical automata syunthesized by the method of
tnertial subcircuits /&, 4/ on the basis of truth tables or state diagrams.

The memory elements of these automata are inertial subcircuits (IS)
(Figure 1, a) which both store and process information. From this
standpoint, an IS plays the role of a single transition circuit /2, in a
synchronous automaton, consisting of an elementary automaton and its
excitation-function circuit.

A A

1) Ai-..A[
X Xe] 132 X
AIA XQ
A; . 4[ X,(
Xe... Xe IS,

FIGURE 1. Block-~diagram of an asynchronous
automaton:

a —noaredundant; b-—redundant (IS — inertial
subeircuits D —decoder circuit; Z — output circuit;
Xi(.n the redundant automaton)— corrected

value of the IS output signal X:i*),
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Apart from the inertial subcircuits, the automaton contains an output
circuit whose inputs receive the input signals of the automaton and the output
signals of the IS.

In the sequel we shall consider the correction of errors in any IS. By an
error in some logical circuit or individual AND-, OR-, NOT-element we
mean the appearance of the wrong signal, zero or one, at the corresponding
output.

To prevent an error in a single logic element from affecting more than
one IS, the different IS must be mutually independent. By introducing
vector addition and multiplication by an element of the field GF(2), thesetof
output signals of an IS may be regarded as a vector over this field.

We shall call the output signals of the nonredundant IS information
symbols, and those of the redundant IS —parity-check symbols. The
required number of IS is determined by methods of the theory of self-
correcting codes in the same way as the number of elementary automata in
synchronous automata /2/.

The output vector of the IS of the redundant automaton proceeds to the
decoder circuit (D) (Figure 1,b), which is also used in single-cycle
automata /1/. The decoder circuit produces the corrected values of the 1S-
information signals, which in turn proceed to the inputs of the output
circuit Z and the corresponding IS.

Just as in single-cycle circuits, it is obvious that the decoder D must
have a higher degree of reliability than the rest of the automaton, since
otherwise the introduction of redundancy by this method becomes
meaningless.

To determine the structure of the parity-check IS, it is convenient to
use the coding table of the synthesized automaton /3/; this table is
constructed from the truth table and indicates what conjunctions are
involved in each IS. The coding table of a nonredundant automaton has as
many columns as there are parity-check IS. The values of the parity-
check-1S signals are found by summing the corresponding values of the
IS-information signals in one row, according to the specific parity-check
matrix selected /1,2, 3/.

As examples, we consider correction of a single error in time-
independent and time-dependent automata.

Example 1. Synthesis of the automaton whose state diagram is
illustrated in Figure 2, with correction of errors in any single IS.
Undesirable competition is prevented by filters.

Table 1 is the truth table based on Figure 2.

TABLE 1.

A, Z

0

X: (1), X2 (0)

X (1), X (0)
0




A A,

FIGHRE v, Rtate diasram for Example . FIGURE 3. Circwmt of

nonredundant autematon
tExamnple L),

The truth table vields the following system of equations:

(1)

The corresponding automaton is illustrated in Figure 3.
The coding table of the nonredundant automaton is given in Table 2,
Since there are two IS, we see, following /5,, that three parity-check
IS are needed for single-error correction, i.e., a (5, 2) code is used.
Using the parity-check matrix
i 10100 73
H= 1010
= o100t 2
we find the output functions of the parity-check IS:
Na=Xy
X.; = X] @ Xz; ]
Xs= X,

A4
M A X,
A A X,

We add two columns to the coding table (Table 2) in accordance with (2),
to obtain the coding table of the redundant automaton (Table 3).
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TABLE 3.

According to Table 3, the equations for the IS of the redundant automaton
(taking into account that all subcircuits must be independent) are:

X|*=ZIZZ+Z2XR§
Xp*=A,Ap+ A, Xy
X3*=2122+22X1:
X =A\ArXy+AA:X; (3)
Xs* =/T|/T2+A~1X22
Z=Axgle+zuqzxz.

To compute the syndrome (see /1/), the decoder circuit must be based
on the equations

s2=X*@Xo* @ X% (4)

si=Xr@Xs%; }
83=X2*®X5*~
It is clear from equations (4) that the value of the syndrome correspond-
ing to an error in IS; (wrong value of X)) is (110), while for IS, it is (011).
Consequently, for the error vector we can write

€1 =512} } (5)

€9 =5983.

The circuit of a redundant automaton based on (3-5) is illustrated in
Figure 4.

Example 2. Synthesis of a time-dependent automaton, with error
correction in any one inertial subcircuit. Undesirable competition is
eliminated by filters. The automaton operates in the following way. When
the input of the automaton receives a signal in the form of a single pulse
of duration 7, the output of the automaton must emit two pulses of the
same duration t; when the input receives two pulses of equal duration =,
the output must emit a single pulse. To simplify matters, we shall
assume that the pulse duty factor is !/,. Thus, the automaton must return
to its original state after a time 4 v.

According to /3, 4/, synthesis of a time-dependent automaton requires
either delay elements with delay v, or the introduction of an additional
input which receives a signal from a rectangular-pulse generator.

In this example we shall apply the second method, assuming that the
appearance of the input signal coincides with the appearance of the
supplementary rectangular pulse. The time diagrams of the input and
output signals are illustrated in Figure 5.
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The state diagram of the synthesized
automaton is illustrated in Figure 6. The
initial state is X;. The diagram allows for a
possible time lag between the appearance of the
initial basic and supplementary input signals —
it provides for transitions from the single-
valued state « and the two-valued state X; to the
state Xs, which characterizes the appearance of
the first output pulse. Moreover, if a noise-
signal appears at one of the inputs in the initial
state of the automaton, the latter returns to
this state after the noise has disappeared —there
are transitions from X, and o to Xz.

The diagram of Figure 6 corresponds to the
FIGURE 6. State diagram for time- following truth table (Table 4).
dependent automaton (Example 2). Table 4 corresponds to the eguations

Xi=ARXo+ARXy;
Xo=AR Xs+AR Xy
Xo= AR K+ ARK +AR Xo+ A R; (6)
Z=ARX;+ARX,

The nonredundant automaton based on equations (8) is illustrated in
Figure 7. It contains three information IS, and therefore, according to
/5/, we need three parity-check IS, constructed on the basis of the
following parity~check matrix:

110100
H= 101010
0110601

According to the matrix H, the parity-check IS must compute the
functions

X5=X|®X31 (7)

X=X Xy;
Xo= X2 Xs.
In view of (6) and (7), the coding table of the redundant automaton is
that given in Table 5.
It is clear from Table 5 that the parity-check IS of the redundant
automaton realize the following functions (after simplification):

X*=ARX,+AR X
X*s=A+R+Xs; (8)
Xe*=A X,4-R.
By /1/, the syndrome circuit must compute the following functions:
si=X*@X* X (9)

se=X*@Xs*@ X5*;
s3=X* @ Xs* O Xs*.




TABLE 4

e !¢ z l X X X
' — — -
0 0 X2 (0), X3 (0) X2 X, Xz
0 . X (1), X (0) X, ] X
| ¢ 0 0 0
I n Xy (1), X5 (0) 0 X X,
AAERLE LY,
fasn
) S §

—
AND-

FIGURE 7. Cuircuit of nonredundant time-depeadent
automaton (Example 2}

TABLE 5,
” X X Xy X Xs* Xe*

ARX, 0 0 1 ] 1 1
AR X, 1 1 0 0 1 L1
ARX, 0 0 1 0 1 1
1R X, 1 0 0 1 I 0
AR 0 0 1 0 1 1
AR Xs 0 I 1 1 1 0

Following /1/, the error vector derived from (9) is given by the equations

€] =882,
g2=2S583;
£€3=28253.

(10)
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The circuit of the redundant automaton based on equations (6, 8, 9, 10) is
illustrated in Figure 8.

AdRP Y AR

—JaND

— m —F}-—2z

—AND
L —1

FIGURE 8. Circuit of redundant time-dependent automaton (Example 2).

CONCLUSION

In synthesizing asynchronous automata, using self-correcting codes to
increase reliability, the question arises (just as in the case of single-stage
circuits /1/) as to decomposition of the automaton into independent
subcircuits larger than inertial subcircuits. The question of optimal
decomposition requires further investigation, employing computers. To
increase the reliability of the output circuit of an asynchronous automaton
one must apply the methods described in /2/ for synchronous automata.

Increase in the reliability of the redundant automaton as a whole, when
the latter is synthesized by the above method, depends on the complexity
of the nonredundant automaton (i. e., on the number of inertial subcircuits)
and the complexity of the individual logic elements. As in the case of
single-stage circuits, the more complicated the nonredundant automaton
and the more reliable the individual logic element, the greater the increase
in the reliability of the redundant automaton in comparison with the
nonredundant automaton.
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G.F. Fritsnovich

EXTENDING THE FIELD OF APPLICATION OF THE
METHOD OF INERTIAL SUBCIRCUITS

A formal method is given for transforming an arbitrary sequential machine Pwith s \nputs and m outputs
into an asynchronous sequential machine P* with n+!inputs and m outputs whose operation 1s defined by
changes in the input state. The new machine P* is information-input equivalent to the onginal machine P.
This transformation makes the method of inertial subcircuits applicable to the class of all sequential
machines.

The basic principles of the method of inertial subcircuits were first
described in /1/. Further developments were given in /2-6/.

The basic principle of the method of inertial subcircuits is the
construction of the logical structure, satisfying given operating conditions,
on the basis of stable states, utilizing the natural internal delays of the
logic elements and feedback loops. The role of timing signal may be
played by any change of input state, provided the time 7 between two
consecutive changes in greater than Tips where 7yp is the duration of the
transition process initiated by the first state change.

These features of the method naturally impose certain restrictions on
its applicability. The method is directly applicable only to the class of
sequential asynchronous logic circuits (SAI.C) /4/, which are asynchronous
sequential machines whose timing is determined by changes in the input
state /4/ (time-independent logical automata, in the terminology of /2/).

In this paper we shall consider the possibility of extending the method
to the class of all sequential machines. *

The basic notions, introduced in /4/ for SALC, may be extended to
the class of all sequential machines. These notions are: input state p;
(i=1, 2, ..., 2* , where n is the number of input variables), output state
A (j=1, 2, ..., 2, where mis the number of output variables), internal
state %, (r=1, 2, ..., 2%, where k is the number of intermediate variables),
and (full) state p.(s=1,2,...,2"**), We shall also assume that any sequential
machine P has finite sets of input states R={p1,p2,...,p,}, output states
L={M, A2, ..., A} and (full) states M={w;, p2, ..., apal  AS In /4/, the set
M is divided into two subsets Msand M®, where M*®consists of all stable
states and M" of all unstable states. It is also convenient to introduce the
set M' = M of all utilized states, i.e., all states of the synthesized device
for which there exist input states and transitions.

To define the mode of operation of a sequential machine, we shall use
the state graph G.

* For a definition of sequential machine, see /8/.




By the state graph of a sequential machine we mean a finite directed
graph G whose vertices are interpreted as the states of the machine., A
vertex g of the grapl G is connected to a vertex j by an edge if and only f
there exists a transition from the state n.{corresponding to the vertex gJ
to the state p,(corresponding to the vertex f).

With each vertex of the graph ( we associate a pair of syvmbols (¢, 7)),
where p < Rand 7,2 /.. We stipulate that any vertex which corresponds to
a stable state of the synthesized machine has a transition from itself to
itself (elementary loop), which means that the machine remains in this state
until the next change of input state. By the definition of stable states /4,,

a vertex of ¢ with the designation(p;, 2,)does not possess a loop if and only
if 1t has a transition to a vertex, the first symbol of whose designation is
also p.. The number of vertices of the graph G is (<22"*, coinciding with

the cardinality of the set M‘. In the special case M/ = M, the output states
and transitions are specified only tor the stable states and the state graph G
coincides with the graph of stable states.

In the general case, the requirement that the sequential machine be
deterministic and its operation completely defined imposes the following
conditions on the graph G. The [ vertices of the graph (the set of utilized
states M) may be divided into 2" subsets M(p), M(pa)... .. M(p). ... M(o™)
each consisting ofal.vertices whosedesignation contains the same p,. Each
vertex of the subset M(p,)is the initial point of exactly 2"—ledges connecting
it to one vertex in each of the remaining 2"~ lsubsets, and one edge which 1s
either a loop or connects the vertex to a vertex of the same subset M'(p,).

If a graph Gppossesses the above properties, and each of its vertices is
assigned a pair of symbols (p;, 7,), where p; ¢ Rand % ¢ L, we shall say that
the graph defines the operation of some sequential machine P.

Conversely, any graph may be defined by its adjacence matrix M.
Suppose that every row (column) of the matrix Mpis associated with the
pair (p;. »)which des.gnates the corresponding vertex of the graph, and that
the rows (columns) are arranged in increasing order of the binary
representations of the first symbol in the pair (p.. 2,).

The matrix Mpof the state graph G of a sequential machine possesses the
following properties:

1) It is of finite dimension IX!.

2) The matrix mszy be partitioned by 2"—1horizontal lines and 2*-1
vertical lines in suck a way that each of the resulting horizontal (vertical)
groups of rows (columns) consists of rows (columns) whose designation
involves the same first symbol p., and no others; moreover, each row of
the submatrices formed by the partition contains exactly one nonzero
element.

3)

!
E my,=2"

j=1

where g=1,2, ...,/ and m,, is the element of the matrix Mp at the intersection
of the g-th row and the j-th column (this follows from property 2).

We shall call these properties the conditions for realizability of a
matrix Mpin the class of sequential machines. By a realization we mean




the construction of a sequential machine whose operation satisfies the
conditions implied by the form of the matrix Mp.

In the special case M' = M; the state graph G coincides with the graph
of stable states of the sequential machine, and the matrix Mp has the
following properties:

1) it is of finite dimension X!

2) mue=1for g=1,2,...,1 and mg is an element on the principal diagonal of

the matrix).
3) The submatrices formed by the partition described above have the

following properties:
a) each row of each submatrix contains exactly one nonzero element;
b) the submatrices on the principal diagonal are unit matrices.
4)

{
2’ me=2", whereg=1, 2, ..., [

j=1

We shall call these properties the conditions for realizability of the
matrix Mpin the class of sequential asynchronous logical circuits (SALC).

If a given matrix M, is not realizable in the class of SALC, but is
realizable in the class of all sequential machines, the method of inertial
subcircuits is not directly applicable since transitions and output states
are specified for unstable as well as stable states. With regard to the
state graph, this means that besides edges connecting vertices of
subsets M(p;) and M'(p;) for i#j (which is the only possibility in SALC),
there are edges connecting vertices belonging to the same subset M'(p.).
In the latter case we shall speak of a change of state (also output state)
of the sequential machine for fixed input state p;. The presence of such
changes means that the timing of the operation of the machine must be
"more rapid' than the timing defined by the input-state changes alone.
The difficulties involved in defining this "more rapid" timing preclude
direct application of the method of inertial subcircuits, which uses the
input-state changes as timing signals.

One way of overcoming these difficulties was proposed in /7/ —to
introduce an auxiliary input signal and utilize the changes in its values as
timing signals; thus transitions of the machine from one state to another
are possible even when the values of the basic input variables do not
change.

We shall indicate a method, convenient for machine synthesis, of
introducing an auxiliary input signal when the sequential machine to be
synthesized is given by the adjacence matrix of its state graph.

The basic idea is to transform a given sequential machine P with n inputs
(input variables A,, Ay, ..., A,) and m outputs into a certain sequential
machine P* with n+1 inputs (input variables 4;, Az ..., 4s A ) and m
outputs, whose timing is determined by changes of input states. This is
done in such a way that the machine P* realizes the same information-
processing operator (with regard to the basic inputs) as the machine P.

We shall call the auxiliary input A of the machine P* its timing input,
and the remaining n inputs its information inputs.




Starting from a sequential machine P with n inputs, set of input states

R={pw p2. .. . p2n}, and set of output states L={l. 42 ..., ham}, we transform it
into a sequential machine P* with n+1 inputs, set of input states F~={¢.. ¢2.
o+t and set of outpuc states L= {A;, %2, ... . X7}, this transformation

will be called the introduction of a timing input.

We shall say that the sequential machine P* is information-input
equivalent to the machine P, if and only if 1) P*is obtained from P by
introduction of a timing input; 2) given any state us of P, there exist two
stable states p.*, p-* of P*such that, if p; and either of pp* p-* are taken
as initial states (for P and P*, respectively), and the same sequence of
input- state changes applied to an information input* of P* and an input of P,
then both machines P and P* produce the same output sequence, whichever
of the states u,*, #* is chosen as the initial state of P*. The solution of
our problem is embod.ed in the following theorem.

Theorem. Any sequential machine P may be transformed by
introduction of a timing input into a sequential machine P*, information-
input equivalent to P, whose timing is defined by changes of input state.

Proof. Let Pbe an arbitrary sequential machine with n inputs, and
let Mpbe the adjacence matrix of its state graph Gp, of dimeunsion /X[

Partition the matrix into submatrices by 2"—1 horizontal lines and 2"—1
vertical lines, as described above. Replace every submatrix on the
principal diagonal by & unit matrix of the same dimension. The result is
a matrix Mp' of the sarmne dimension as M. Form the matrix

Mp*=

My Mp
My My’

There is a well-defined correspondence between the rows (columns) of
the matrices Mp and Mp* under which each row (column) of Mpcorresponds
to exactly two rows (columns) of Mp* Thus, the g-th row (column) of Mp
corresponds to the g-th and (+g-th rows (columns) of Mp (g=1, 2, ..., D).

Let us assign each row (column) of Me*a designation in the form of a
pair of symbols (p:, ;) where 9:¢ Fand »; ¢L, in the following way. If
the g-th row (column) of Mp*has the designation (p:, 4,), we designate the g-th
row {column) of Mp*by the pair (g;, 4,) and its /+g-th row (column) by the pair
(27 +:, Aj), where ¢; and g¢274: differ only in the Jalue of the (n+1)-th input
variable. In states . ¢z ..., ¢2n the (n+1)-th input variable has value zero,
while in 2741, @2742,... , g27+lits value is one. The values of the other n input
variables in the sets ¢ and ¢2*+: coincide with those of the corresponding
input variables in the set p;.

Once the designations of the rows (columns) of Mp*have been defined,
this matrix defines a certain sequential machine P* with n+1 inputs (nx
information inputs and one time input) and m outputs.

Regarding the above transformation of P into P* as the introduction of
a time input, the resulting machine P* is an asynchronous sequential
machine whose timing is defined by changes of input state, since, as
follows from its construction, the matrix Mp* is realizable in the class
of SALC.

Here we mean a generalized information input, whose state 15 defined as an crdered set of values of
binary variables,
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In view of the fact that the sets of all output states of the machines P and
P* coincide, the block symmetry of the matrix Mp* and the fact that each
of the two rows (columns) of Mp* corresponding to a given row (column) of
Mp*has a designation with the same second symbol which coincides with the
second symbol in the designation of the My row (column), it is not difficult
to see that the sequential machine P* is information-input equivalent to P.

The following corollary is of practical importance.

Corollary. Any sequential machine may be synthesized by the method
of inertial subcircuits.

The procedure is as follows:

1) Check the given data for realizability in the class of sequential
machines.

2) Specify the operating conditions of the required sequential machine
in the form of the adjacence matrix of its state graph.

3) Check the matrix for realizability in the class of SALC.

4) If the machine is realizable in the class of SALC, apply the method
of inertial subcircuits.

5) If the conditions for realizability in the class of SALC are not
satisfied, transform the machine by introduction of a timing input, and
synthesize the new machine by the method of intertial subcircuits.

In conclusion, we remark that the above problem may be regarded as a
special case of the general problem of timing-conversion of sequential
machines /8/. We have studied the conversion of a sequential machine P,
with n inputs and m outputs, whose timing is defined by changes of both
input state and internal state, into a sequential machine P* with n+1 inputs
abd moutputs, whose timing is defined by changes of input state, by
introduction of a timing input.

This transformation makes it possible to extend any other method of
constructing sequential machines, based on stable states, to the class of
all sequential machines.
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THEORY OF AUTOMATIC CONTROL
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A.K. Zuev, L.A. Rastrigin

ESTIMATING THE PARAMETERS OF THE
OBJECT OF OPTIMIZATION

Estimates are determined for the useful signal and distance to the goal for linear and central objects
of optimization in the presence of noise, in a random-search process,

FORMULATION OF THE PROBLEM

In optimization of systems upon whose quality function random noise
is superimposed optimal search strategies cannot be devised unless
certain parameters of the object are known. Among these parameters
are the level of the useful signal, i.e., the maximum variation of the
quality function for a fixed step of the search, and the distance to the
goal (extremum point); the latter is used to determine when the system
enters a given neighborhood of the extremum, and, counsequently, to
determine the optimum step size.

Statistical estimates are thus required for these parameters at each
step of the search.

We consider an optimalizing control system operating by the method
of random search with accumulation /1/. The quality functions for a
linear and central model of the object are, respectively,

Q= (grad Q- X, (1)

Q=lgrad QX —-X*, (2)

where the parentheses denote the scalar product.

We assume that the gradient of the quality function depends only on the
position, not on the time. X=(x,...,x,)denotes the current state vector
and X*the position of the goal, where the quality function assumes its
maximum value.

The search procedure is carried out by displacing the system from its
initial position in a random direction for a distance equal to the trial step
size g, in the space spanned by the parameters x,...,xa. The resulting

variation of the quality function of the object is then —;‘—(—qs % sq),

where

g=g lgrad Ql. (3)




2
With each measurement, an additive uncorrelated noise function s (—;—)

with normal distribution

p(e)=l—_exp(——€i). (4)
o= o2

is superimposed on tae quality function of the controlled object. The
accumulation of the statistic is accomplished as follows. Choose a
random direction in the parameter space and sample the quality function
on both sides of the initial position, at a distance equal to the trail step
size. These two measurements determine the increment of the quality
function

z=u+elc?), -x<z<>, (5)

Carrying out similar measurements for different random directions and
step sizes we obtain an independent sample

2y 22y vy By (6)

which characterizes the neighborhood of the initial point.

The problem is to determine the unknown parameters gand r=!X—X*on
the basis of the finite sample (6).

To this end we employ standard estimates for the expectation and
variance of a random variable /2/. The estimates will be considered
for both linear and central models of the quality of the system.

2. LINEAR FIELD

A general expression was derived in /3/ for the probability density
of u:

T _n_) n—3
”"‘“’=-'(—2n-1‘(“§:‘) K (7)
)

where I is the gamma-function.
For simplicity we shall consider the case n=3, and find an estimate
for ¢g. The probability law is

ps () =3'q— (8)

with expectation zero and variance

aut=4q% (9)
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Using (5) we find the variance of the variable z:
62=02+ %4

The variance has the standard estimate

Using (10) and (11) we find the required estimate:

P (12)
=3 \I=L 42/,

m

Evaluation of the estimate using (12) should involve a fairly large sample.
Limit theorems then imply that the estimate 42 is normally distributed.
However, it is clear from (12) that when the sample size is finite (as is
necessarily the case in practice) some estimates of g may turn out to be
imaginary, while it is evident from physical considerations that ¢ is
essentially real. Samples that lead to imaginary estimates are therefore
rejected as unsuitable. The rejection of some of the samples results in
a truncated statistical law and a biased estimate.

Strictly speaking, the distribution of the estimate for ¢ is not normal;
nevertheless, in order to obtain approximate estimates we shall assume
thatit is indeed normal.

An expression for the expectation of a truncated normal distribution
is given in /5/. Using this expression one obtains the following unbiased
estimate g, for the parameter g¢:

A
~

~ N 2
domg-—2 e (— L) (19)
1/2_:?[1+<b(f—°)] 207

Ggq

~ A~
where 63 is an estimate for the variance of the estimate ¢, and

@O(x)= %Je“”-dt (see /6/).

The empirical estimates that we cite refer to a small sample and the
results are therefore only approximate.

Table 1 gives results of a statistical simulation of the problem using
random numbers. 10 experiments were performed, each involving a N
sample of size m=5. It was assumed that o?=1, g=1(imaginary valuesof ¢
were rejected).




TABLE L.

Na.
of sample

9

Table 1 yields

~ ~ 2
g=128, 3; =028 (14)

The unbiased estimate ¢o~1.06 is a satisfactory estimate for g=1. Now
consider the question of sample size. It was mentioned above that some
samples may yield an imaginary value of 9, and then the entire sample

is rejected. It is nataral to ask whether one can determine a sample size
that minimizes the losses resulting from rejected samples. L.et us assume
that the loss function has the form

R'(Py=P;-m-N, (15)

where P; is the probabnility of a rejected sample, m is the sample size, and
N the number of samples. It is more convenient to consider the loss for
a single sample:

This loss function cannot be given a direct physical interpretation. It is
only a rough indication of the average number of unsuitable measurements
in one sample.

It is clear from (12) that the sample is rejected if

m
{ -
—,—n—1§2}<07. (17)

It is known that the variable 22 is asymptotically normally

distributed:

with parameters /5/




The probability that the sample is rejected is

(02"‘722).’/F

Py=4 {1+<D[—2022— } (21)

When o?=1and g=1this becomes

Py=3 [1—@(‘%’7)]. (22)
Figure 1 illustrates the specific function for this case,
_omf, o Ym
R_—2[1 ‘I’(s )] (23)

as a function of the probability P,

It is clear from Figure 1 that the
curve has a distinct maximum. For
small sample sizes the rejection
probability is large, but the sample
is small and therefore the losses
are small. For large sample gizes
m=100to 400, the rejection probability
becomes small and the losses are
also insignificant.

Formula (21) is valid for fairly
large m. To evaluate the loss for m=
other relations must be used. From
(12) we see that the sample is
rejected if

o @ @2 @ 06 a5 @
A 22 <ot (24)

FIGURE 1. Specific losses (o7=1, g=1). Let us determine the probability that
this inequality is valid. It is shown

in /7/ that the square of a normally
distributed random variable has the following density:

1 22
P(22)=TV2——:[;8XP(—2_622—)~ (25)

Thus the probability that inequality (24) holds is

P,(z2<02)=m(;°72§), (26)

and the loss for m=1is
R =0.612.

This point is indicated in the figure by a triangle.
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The part of the curve corresponding to 1<m<30 is based on formula
(23), and thus, because of the small sample size, must be regarded as
approximate. On the figure we have replaced this branch of the curve by
a dotted curve through the point determined above for m=1. It is clear
that the properties of the curve are not affected thereby. We also carried
out a numerical simulation of the rejection process for m=5 and N=20;
the corresponding point is marked by a black dot. Its position obviously
does not contradict the above representation. We emphasize that this
loss criterion is of tentative value and cannot be used for rigorous
determination of sample size. A suitable criterion for optimum sample
size would seem to be the average time required to find the extremum,
which is beyond the scope of this note. Nevertheless, our criterion does
imply one gualitative conclusion: Economical utilization of experiments
apparently does not require large sample size.

3. CENTRAL FIELD

It follows from ;3 that in this case the probability density of the
output variable for n==3is

pﬂu):i;(l——?—) (27)

with parameters

(29)

where r is the distance to the goal.

This gives the following parameters for the sum (5) of the distributions
for n=3:

(30)

N 2
o i=024 g(l— s—qr—,) (31)

As in the linear case, estimates for rand g are obtained by standard
techniques — the maximum likelihood estimates for m. and o,2:




o:2= E‘:TZ (25~ my)2. (33)
j=1

Substituting (32) and (33) in the left-haud sides of (30) and (31) and solving
the resulting simultaneous equations, we get the following estimates for r
and ¢q:

n ~
al+mP—a?

= , (34)
m

’” ~
g=V 3lo2+m2—o%

(35)

It is clear from these formulas that in practice the estimate for r may
be negative, and that for ¢ imaginary.

Samples having no physical
meaning are rejected as unsuitable.

As in the linear case, we have thus
obtained biased estimates.

Using /5/ we have the following unbiased estimate for r:

~
~ A

20 7
ro=r— r 9

I w2 o (—T'a) ,
2q7
1”2?[1+®(f—°)] °

gr

2

where o is the estimate for the variance of the estimate r.

An unbiased estimate for ¢ is given, as in the linear case, by formula
(13).

Table 2 cites experimental data for a central field. The initial values
of the parameters are o?=1, r=1, ¢g=1, and the sample size m=5.
TABLE 2.

No. of
sample

A
ri

~

qi

A2
o7 =111 (37)

~

~A 2
g=153 oy =0444 (38)

Solution of equations (13, 36) by successive approximations using the
initial data (37), (38) gives the following unbiased estimates g, and .




If corrections for bias are taken into account, the experimental results
give more satisfactory estimates for the required parameters, To compare
formula (34) with the Linear version of the estimate, let us apply 1t to the
sample obtained for the linear field. For the expectation M[r] we obtain

. . -
MiA=limr= — 29 < (39;

_ -
m oy oG R i
hmFZz,

=1

Formula (34) thus agrees with the lLinear version.

The above approxirate estimates for the useful signal and the distance
to the goal give satisfactory results in experimental practice. The loss
criterton for estimation of the parameters makes it possible to limit the
sample size.

(n the basis of the estimates of these parameters the trial step size
can be corrected, with a view to more precise determination of the
extremum of the quality function and reduction of the average time needed
for the search.
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L.K. Lapkovskii, L.A. Rastrigin

DIAGNOSIS BY COMPLETION

A method is given for diagnosis by completion, applying the method of self-adjusting models. The
method may be used to determine the parameters of an 1naccessible circuit. As an example we consider
the diagnosis of a T-junction shaped bridge.

1. The diagnosis of multipole circuits by simulation, considered in
/1/, is based on the assumption that the dynamic properties of the object
are accurately represented by the parameters being determined.

Let X=(x), x5, ...,%,) be the vector whose components are the parameters
being determined in the diagnosis, and A=(a;, aa...,ay) the vector of
dynamic parameters of the object. For instance, for a linear quadripole
circuit the vector A determined the coefficients of the response function
linking the input y(¢) and the output z(¢):

28N+ @2t L Qe=0ep 1™+ ... Famy. (1)

It is clear that the dynamic properties of the object establish a
correspondence between the n-dimensional parameter space {X} of the
object and the m~dimensional dynamic-parameter space {A}. This
correspondence may be expressed as a relation

A=F(X). (2)

The physical significance of this relation implies that it is one-valued,
i.e., to each value of the vector X corresponds a unique value of A(every
system has its own specific dynamic behavior). The converse is in
general false. This means that for a given type of system there may be
a number of vectors X corresponding to the same vector A, i.e., in
general several systems may exhibit the same dynamic behavior.

The simplest exX®mple of such a system is a potential divider, where
information concerning the transfer function of the divider conveys no
information on the resistances of which it consists. This is illustrated in
Figure 1 in schematic form: To one vector 4 corresponds a one-~
parameter manifold of vectors X.

Diagnosis utilizes the dynamic properties of the system in order to
determine its parameters. In the light of the above discussion, it is
clear that the diagnosis may not be unambiguous. In /1/ one of the present
authors studied the special case in which the relation (2) is one-to-one.




The present paper deals with the more general case in which observation
of the dynamic properties does not
ensure unambiguous diagnosis. We
employ and develop the method of
self-adjusting models, using a
procedure of multi-parameter
optimization ;2,.

2. As in /17 it is assumed that the
structure (schematic diagram) of the
object of diagnosis is given in the form
of a multipole circuit certain parts
of which are inaccessible to
observation. For simplicity we shall
confine ourselves to linear passive
quadripole circuits (the general case
FIGURE 1, Schemauc iltustratien of the may be treated similarly).
relations hetween the space of the parameters We remark that the method of self-
hiifn(izjrmmed and the space of dynamie adjusting models is applicable to the
P s synthesis of arbitrary systems.

including nonlinear systems ; 2/ —this
is one of its advantages. We confine ourselves to the linear case to
simplify the mathematical treatment and to ensure greater visual clarity.

We suppose that the object of diagnosis is 'completed, "' i. e.,
incorporated in a larger system. in such a way that the required properties
can be ascertained. In many cases this can indeed be done. Figure 2 is
a block-diagram of completion diagnosis. The system under diagnosis (SD)
is provided with blocks 1; and 2; whose properties may be varied (i=1, 2, 3, .
.., 1) upon command from the control block (CB). Information on the state
of the object and its model (M) in the form of signals z(f) and 2'(f) is compared,
and some function Q;(X’) measuring the difference between these signals is
transmitted to the input of a multichannel optimizer (MO). The latter sets
up the quality function

Q= 3 Q) (3)

i=1

and finds its minimurr. for all realizations of the blocks I;and 2;,

The minimum of the function (3) with respect to the model parameters X’
is attained when the model M is identical with the object SD, i.e., it
yields the solution of the problem (when the latter exists).

An analogue of this method is in fact widely used in everyday life, when
a vacuum tube is tested by inserting it in a radio in place of a tube known
to be in working order. If the guality of the reception is unchanged, one
concludes that the tube is in working order. The tube is thus ''completed"
by the radio receiver, the latter revealing the properties of the former.

3. The special features of completion diagnosis will be demonstrated
in a simple example. Consider the diagnosis of a T-junction consisting
of resistances R, Rs,Ri(enclosed in dashed lines in Figure 3), the junction
point being inaccessikle. The dynamic properties of the junction are
determined by a transfer function, but the latter is not sufficient to
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determine the parameters of the former. As indicated above, the junction is
adjusted by applying a voltage r;,, which can assume two values ri;,7ri2, at the
input, and a voltage rz, which can also assume two values ra, 22, at the
output. The discrepancy between the bridge and the model is indicated by

a galvanometer {see Figure 3).

\x

MO

FIGURE 2. Block-diagram of completion
diagnosis using a self-adjusting model.

FIGURE 3. Circuit for experimental diagnosis.

The quality function in this example is based on three observations:

3
QR) = 3 Q:i(R),

ja=1




where R'=(R/, RY, Ri) s the vector of optimizing parameters of the model.
Q; is the absolute value of the galvanometer reading

Q:=lU—-U1, (3)
where U and U’ are the voltages at the outputs of junction and model
respectively.

We claim that if Q(R)=0then R=R!Let us express R{in terms of R; by
the relation

R/=Ri(1+6), i=1,23 (6)
where the §; are assumed fairly small:
18: [ 1, (7)
which 15 the case in the neighborhood of the solution. Using (7) and

performing a few obvious manipulations we obtain the following expressions
from the Kirchhoff equations for the three cases i=1,2,3:

3
B 6,=Ci. i=1,23 (8)
j=1
Byi=— (Rs+rm+R2)Ry; Biz={(Rs+ra(ru+R1);
Bia=— (rn+Ri+R2)Rs;
Bai=— (R3+r2+R2) R Be= (Ra+ra2) (ru+R1);
Bog=— (rii+Ri+R2)Rs;
Bar=— (Rs+raz+R2)Ry; Bae= (R3+ra) (n2+Ry);
Bay= ~(ri2+R;+R2)R3;
C= (Zl/-:"—-[}—‘,) ERyray, Cy= (l_}: - 5—2,) ERora;
Cs=(L':T-—LI/—37>ER2f22;

where U, is the voltag= at the output of the object in the i-th observation,
Uy the corresponding voltage for the model, and E the source emf.

[t is easily seen that when Q(R’)=0 the system (8) is homogenous. Thus
if the determinant of the matrix ||B;ll is not zero the system has no solution
other than the trivial sne:

8;=0, i=1, 2 3, (9)

which means that R;=R8, and proves that the solution of the problem is
unique.

Computations show that in general the determinant of the matrix [[Byll is
not zero, and the method can therefore be used to determine the parameters
of the junction. It is clear that the nonvanishing of the determinant imposes
certain restrictions on the choice of the parameters r;;. However, this
condition is not overly restrictive, since one need only find one (readily
obtained) solution of an inequality of the form

Q(ry, N, T, 722) 70. (10)
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Generalizing the above example, it is easy to formulate a uniqueness
condition for a similar multidimensional object with arbitrarily many
parameters: the analysis is unique if the rank of the matrix || Bi; Il based on
all the observations, is not smaller than the number of parameters of the
object under analysis, when the quality function of the system is a minimum.

The function Q(R’) must be minimized. Indeed, the diagnosis problem
could be solved on the basis of the system of linear equations (8) alone.
However, in so doing an error is introduced, since these equations were
set up subject to the constraint (7), which is in general not satisfied by
the initial values of the parameters. One might suggest starting from the
exact equations, but the exact equations relating the parameters to be
determined and the observations are in general nonlinear, even
transcendental, and thus lead to serious computational difficulties.
Approximation of these equations by the linear system (8) leads to a
solution by iteration and the process determining the exact values of the
parameters R’ may be unstable.

4, As an illustration of the discussion, Figure 4 indicates the actual
diagnosis process for R;=481 ohm, R;=1011lohm, R3=255 ohm and
supplementary resistances r;; =1040 ohm, r2 =1711 ohm, ry» =2090 ohm,
ry2 =7540 ohm. The optimization was carried out by the method of
successive variation of parameters (Gauss-Seidel) with step size 20 ohm.
It is clear that the process is convergent, i.e., the model parameters
converge to the object parameters.

R0
(0"“;% (volts)

L

w & o w w m~

FIGURE 4. Behavior of the quality function Q and the model parameters R/, Ri, Ry
in an actual optimization process to determine the parameters of a T-junction.
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Solution of the same problem without minimization yields the values
6= —0.046; 8§;= —0.034; §3==—0.122, while the precise values are §=-0.380: §; =
=—090; §3=—0.6L1It is clear that the errors are significant.

Q
Y1 £
7
5 \\
5 \

‘ N /

, 4 N\ /
1 \ \\ ,/

00 200 00 <0 0 &0 WO B0 W W0 M0 100 B Richms

0

FIGURE &, Dependence of tha quality function Q on the model parameters,

Figure 5 illustrates the behavior of the quality function when one of
the model parameters s varied and the other two coincide with the object
parameters. The extremal character of these dependences is obvious, thus
emphasizing the need for multiparametric optimization.

We note in conclusicn that the diagnostic method proposed here is
especially effective in determining the parameters of quadripole circuits
with reactive and nonlinear resistances, when the solution of the equations
of the object is particularly laborious.
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Ya.A. Gel'fandbein, L.V. Kolosov

DETERMINATION OF INTERNAL DISTURBANCE IN
MULTIVARIABLE DYNAMIC SYSTEMS DURING
PERFORMANCE

A method 1s studied for determining the statistical properties of transient disturbances distributed in
sveterns with cross connections, according to realizations of the input and output signals determined
during the operation of the system.

The papers /1—4/ are devoted to certain problems concerning the
statistical properties of disturbance which is applied at the output and acts
during the operation (possibly abnormal) of a system. Of course, in
practice it may occur that the disturbance is concentrated at a single
point of the system, but such an idealization is highly improbable. In
reality the system usually contains several sources of disturbance and it
is required to find their statistical characteristics and to eliminate the
disturbance itself at the "'nodes' of the block-diagram.

We shall consider one method for the solution of this problem, studying
as an example the multivariable nonstationary control system whose
block diagram is illustrated in Figure 1. The notation is as follows:

wo(t, &) : pulsed weighting function of the plant;
w(t, &) pulsed weighting function of the controller;

w (4 8), wa(t,&): pulsed weighting functions of the cross connections of

the plant;

wa(t E), w.(t,&): pulsed weighting functions of the paths in which the effect

of the disturbances may be disregarded;

ws (£, E), wa(t, E): pulsed weighting functions of the plant along the paths of

disturbances [, (), f3(f), respectively;
fo(8), fo(¢): disturbances at the output of the plant.

We shall assume that the statistical characteristics of the signals y(¢),
x(t), and ye(f)during the performance of the system have already been
determined by some method.

It is required to determine the statistical characteristics of the
disturbances fi(¢#), f2(¢), fa(f), fa(2).

To solve the problem, we first move the takeoff points 1 and 2 beyond the
summing points 3 and 4, respectively, and then move the summing points

1 and 2 beyond the summing points 3 and 4. This results in the block
diagram given in Figure 2.




Bloack drrzram vt a bty arfahle wostom with cross connection.,

Y

& i
Y &fuzrig P
z/t)

0

FIGURE ©, Transformed block diagram of the suato,

In accordance with tae block transformation rules we have the following
relations:

t 4
Hau.a)=[-va<t.n>wb<g,n)dn; Hy (2,8 = [wo(t, ) s (& m) din:
& 3

' t
ch.§>=jwc<t,n)wd(g,n)dn: Ha(t.9) =f (2, ) @a(E m)dn
g £

Ny =m(t) +f2(2); Na(t) =na(t) +[4(t);

I3 3

m(ey=[wnt Of E)dE () =fwd(t,§>fa<§)d§.

[ Q

We solve the problem by the method of sequential search., In the first
approximation we disregard the cross connections and determine the




statistical characteristics of the applied disturbances N,(¢) and Na2(f). It is
clear from Figure 2 that the first approximation is

Ny () = (8) —fﬂau, £ x(E) dE;
[

t

No' (1) =pa (8) —pr(t. £)x () dE.

4

Computing the expectation of both sides of these equalities, we get

t
) = my, (1) — f Ha (L, £) me(2)dE;
0 (4)

7 (1) = g, (1) — f Ho(t, &) ma(8) dE.
0

The central values of the disturbances N,/ (f)and Ny’ (t)are obtained by term-
by-term subtraction of (4} from (3):
'
M0 =) —fﬂa(t, B)X(E)dE;
0

3
Nz/(t>=y"2(t>—fm(t, £)x(8) dt.

0

Using the definition of the autocorrelation function as the second-order
central moment /5/, we get

K, (i, t2) =MIN, (1)) Ny (8)), (6)

and by (4), (5)

I
K (11, 1) = Kyiw, (b1 £2) — f Ha(008) K, (E.42)
0

(7)

4
Kiv, (h, t) = Kyum (4, 2) —ch(fn,'é)Kx'N, (&) dE,

[]

where Ky:N, (t, t2), Ko (& t2), K,,,'N,(tl, t;) and Keng (5, t;) are the corresponding
cross-correlation functions.

The cross-correlation functions of the disturbances are derived
similarly. They have the form

4

K}VxM (21, t2) =Ky:N,(fl, tp) _fHa(tl7 §)K;N.(§, ba) dE. (8)

]




It is clear from these expressions that in order to determine the auto-
correlation functions of the reduced disturbances in the first approximation
we must know their cross-correlation functions with the input and output
signals., In practice, direct determinationof these functionsunder actual
operating conditions is often impossible.

Using the definition of the cross-correlation function as the mixed
second-order central moment , 5/, it is easy to derive expressions for the
cross-correlation functions appearing in (7);

=3

Kyv-’\'x'tlv I2) =Ky (4, t2) _fHu(ZZ' MK, . (tn)dy;
0
13

Kan (81, t2) =Ky (b, 12) —fHa(lzy N Ky, (£ ) dn:

[+4

&
Ky {1, 12) =Ky, (8, 1) —j Hette, M) Ky (f, m)dms (9)
[+

£}
Kangtts, b2) =Ksy, (11, 1) -ch(tzp M Ke(ty, n)dn;
2

&
Ky;,\'z(tx» ) =Kyt t,) “fﬁc([m MKy <t nidn.
0

It is thus possible to compute first approximations for the statistical
characteristics of the disturbances using the statistical characteristics of
the input and output signals.

., We now determine, again in the first approximation, the statistical
characteristics of the disturbances f:(¢{) and fi(¢). By Figure 2:

t
yd0=M%n+fHAA@N3ﬁ+
I's ° ¢
+fmm5mm¢—fmmmma@
] , o (10)
mm=Nﬂﬂ+fmm&ﬂaﬁ+
[t}

t ¢
+fmmmmma—fmmama&
o ]

In the complex domain equations (10) correspond to the following
expressions:

y1(p) =NV (p)+H.(p, t)x(p) + He(p, t) y2(p) —Hz,(p,f)h(p);} (11)

y2(p) =N (p) + He(p, t)x(p) + Halp, )y (p) —Ha(p, t) f2(p),
where p=jo.
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This yields

fa(p) = Hy—1 (p, NV (p) + 221 (p) +

Hy(p. t)
+y2(p) —Ho='(p, ) y1(P), (12)
=Hy! 4oy + HelP: 1)
f2(p)=Ha™" (p, N () + =07 x(p)+
+ n(p)—Ha=t (p, )y=(p).
Hence it is clear that the first approximations for fi«(p) and f2(p)are
t t
f4(t)=er‘(t, oV et o pr@aes
0 . [
+yz(t)—fﬂb—l (& Dy EdE
0 (13)

t ¢
fz(t)=be"(t, E)Nz’(§)d§+f6e(t, §)x(E)dE+
4 1]

t
+y.([)—fHd-* (£, 8) g2 (E)dE,
0
where Gu(t, E), Ge{t &) are the pulsed weighting functions corresponding to the
parametric transfer functions

Ha(p, 1) _ He(p.t)
Hop D) 204 CP =m0y - (14)

Gu(p, t)=

From (13) one can derive formulas for the statistical characteristics of the
disturbances in the first approximation. Thus, the autocorrelation functions
are:

21
KiaCt, )= [ Hom* (68) (KB 1) —Kun (&, )1 B
0
4

+qu(t1, E) K 1, (&, 1) d B+ Ky (01, 12)3 (15)
0

&
Kp(t, )= f Ha (1, B[ Knan (6, 1) d E—Kyan (5, ) 1 d B+
[
4
+ [ Geltn ®) Ky (& )b+ Kuis (6, 1),
0
The cross-correlation functions appearing in (15) are given by
ly
Kot ) = [ Hy=" (8 m) Ko, (8 m)dn
4]

&
+ [ Galt mKyx(tumyd n+ (16)
0

iy
+ Ko, (b, 1) — f Hy=* (2, 1) Koy, (£, )d 3
0
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ty
Koplen 1) = f Hy™ Y2, M) Ky x (6, Y n +
Q

<3

+ f Gaite, MY Kzt M)A N+ Ky (0, £2) (18)

]
4
- [flb_l(tg,ﬂ)Ky,(th])dn;
b

Kep (i, o) = j Hy= Y (tey ) Kew, (T m)d 1+
0
+ j Galtz, MKty n)d 0+ Koyl by, t2) —

3

-3
_f Hb-.] (t2) Tl)me (th 'fl)d”l .
Q

[
Ku;/z(thtz):fHd_l(tz.n)l\’y;:v,(thY])dn+
0
s )
+f Ge(iny M) Ky st mMd n+ Ky(t, ) — b
0

&
— [ Ha () Kyt ) .
]

It must be remarked that all the cross-correlation functions appearing in (16)
may be regarded as known, since they are determined on the basis of the
expressions (5), which involve known functions of time:

3

K~.y.<t..tz)=1<v.(t..tz>—f Ha(t), §) Kuy (5, 12)d &;

(1]

4
Kwaltr, ) =Kyl ) = [ Halt, )K= (5 )& (17)
L]

I
Knoaltn, t2) =Ky pn (b1, t2) — f Ha(t £) Kayy (&, ) d &
0

Thus, in principle orie can determine first approximations for the
statistical character:stics of all disturbances acting in a multivariable
system.

Further note that a first approximation for the cross-correlation
function of the disturbances f:(f) and fi(t) is given by

&
K'tor (b, t2) = f Hy=t(ty, &) Kiy, (B, 2) d B+
4 0 s , (18)
+ f Go (b1, B) Karo (5, £2)d &+ Kyl (1), 12) —
[1]

1
— f Hy= (b, ) Kyt (5, t2) A E.
]
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Using the first approximations (13), we obtain second approximations for
the disturbances:

¢ t
Nl"(t)=y1(t)—-fHa(t,§)x(§)d§— be(t, E)y2(5)d b+
1 0

+ | Ho(t, B} (B)LE;
/

(19)
N () =ua(t) ~ [ He(t B)x(E)d - [Hae vy @as
) Q
+ [ Hatt, ) (®)dE
/
The corresponding autocorrelation functions are:
Kni(t, t2) =Ky (0, t2) — f Ha(ty, &) Ken, (& t)d E—~
1 ° )
~fﬂb(t.,a>1<y;~, (& t)d E+
ot‘
+ be(t.,r;)Km,(g, h)dE;
0
Kyt t) =Kyov, (b, t2) — f He(t, §)Kans (&, t)d E—~ (20)
(1]

b 1N
— f Hy(t, 5) Ky (&, t2)d E+ f H(t, K s (5, 12)d &;
0 0
Knwilty, t2) =Koy (11, 12) — f Ha(t, &) Kany (B, t2)d E—
0

— f Hy (b, 8) [ Kya (&, £2) + Ky ing(E, £2) 14 &
Q

The cross-correlation functions appearing inthese equations may be computed
by formulas similar to (16, 17). It is then not difficult, using formulas
similar to (13, 15), to obtain expressions for the disturbances [”(¢) and [ (¢)
and their autocorrelation functions in the second approximation. The known
values of f2”(f)and f.”(t) are then used to obtain a third approximation, and
so on.

The computation continues until the difference between consecutive
approximations becomes sufficiently small.

Having determined the values of the disturbances f2(!) and f«(f) after a
iterations, one can use (2) to compute the autocorrelation functions of the
reduced disturbances m(t) and nao(t):

Kty t2) =Kn, (b1, t2) —Kp, (#1, 2).
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The subscript n indicates that these formulas are based on the n-th
approximation. Similarly

Ko, (0 t2) =Knjlt, 02) ~Kph (8, t2)

This method, though considerably laborious, may be employed using
multivariate correlographs operating concurrently with a high-speed
computer.

The extension of our method to steady-state systems presents no
difficulties, and we shall therefore omit further reference to this problem.
Note that the pulsed weighting functions of the various blocks of the

system needed in the computation msay be found by the method ¢f non-
correlated actions /1'. To determine the pulsed weighting functions of the
separate blocks of the diagram (Figure 1), we need a record of the signals
corresponding to the input and output processes of the block under
consideration, and also a record of some process in the system which is
correlated with the inout and output signals of the block but not with the
disturbance. The most suitable procedure in applying the above method is
nevertheless direct determination of the pulse responses of the blocks by
test probing during the debugging process.

Thus, knowing the pulse transition functions of the various parts of a
multivariable system, one can approximately determine and localize the
noise acting within the system and determine its statistical characteristics
an the basis of the input signal of the system and the output signals of its
cross channels.
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Ya. A. Gel'randbein, L.V. Kolosov

DETERMINATION CF THE STATISTICAL
CHARACTERISTICS OF DISTURBANCE IN A
SAMPLED-DATA SYSTEM DURING OPERATION

Together with the dynamic characteristics of a system under operating
conditions, one often needs estimates for the actual disturbances and
internal disturbance acting in the system and affecting the precision of its
performance. Internal disturbances in a controlled system are random in
nature; as a rule they cannot be accurately determined under operating
conditions, but a knowledge of their statistical characteristics may be of
considerable assistance to the designer in solving problems of compensation
and neutralization of disturbances in debugging. A tentative investigation
of this problem for continuous systems may be found in /1, 2/, In this paper
we propose a method for determining the autocorrelation functions of
internal disturbances in a controller under operating conditions, in
particular, for a sampled-data control system, using discrete shaping
filters.

Consider a steady-state sampled-data system, whose block diagram is
given in fairly general form in Figure 1. The notations are:

fin. 0]: random input process;

dn. 0]: disturbance whose autocorrelation function is to be determined;

ufn, ¢]: output signal;

Wiln. ¢]: pulsed weighting function of the reduced continuous block of the
controller on which the disturbance has no effect;
Win. ¢}: pulsed weighting function of the block of the controller affected by
the disturbance;
W.ln ¢]: pulsed weighting function of the controller;
Wiin. ¢]: pulsed weighting function of the plant.
We assume that during investigation of the system under operating
conditions we have already determined (by known methods; see /2,3,) the
autocorrelation functions of the input and output,and the pulsed weighting
(or transfer) functions of the controller and the plant, the latter given in
discrete form. DMoreover, we assume that the internal disturbance and the
input are uncorrelated.

Let us apply the discrete Laplace transform to the system, and move

the summing point along the path of the signal to the sampler input
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(Figure 2). The transfer function of the feedback loop along the path of the
disturbance may be expressed as follows:

_ Wa*(q,e)Wo*(q, &)
Wa*(9. &) = 75w ,% (4, 0) W* (q, 0) Wo? (3, 0)

and consequently the block diagram of the system may be reduced to that
of Figure 3. The pulsed weighting function corresponding to (1) is

. . Ws* (g, &) Wo* (4, £) -
Wsln, e]=D ‘{1+w<q, 0) W2* (3, 0) Wo* (4, 0)} -

cyjm
W2*(q.e) Wo* (g, )

evdg .

1
2nj 1+ Wi*(q, 0) W2* (¢, 0) Wo* (¢, 0)

finl Xlna)

Ve

Yol

FIGURE 1. Block diagram of a sampled-data control system.

FIGURE 2. Transfer of the input summing point to the input of the
sampler pulsed element.

FIGURE 3. Transformed block diagram of the
sampled-data system.

We thus obtain the block diagram of a closed-loop sampled-data system
equivalent to the system of Figure 1. It is clear from Figure 3 that the
output signal y{n,e] is produced upon passage of the signal #n, e} through a
system whose pulsed weighting function Win, e] is (2).




#n, e]= Z fim, O}W, [n—m, €]+ 1n, 0],

m=0

it follows that

n

qn, Ol=2ln, e]— Z fim, O1W\[n —m, ¢]. (4)

m=0

We shall assume that all signals acting in the system are steady, with
expectation zero, i.e..

mn, 0=mJ]n, el=mdn, 0]=m,n, €]=0. (%)

Since the input and the disturbance are uncorrelated, the autocorrelation
function of the disturbance is

Kufny, no]= KiJ[m, n, g]— Z Wiln, —

my=0

—m, E] Z W.[n, —ma, e]K,,[m,, m2] .

me==0

In view of the fact that the autocorrelation function of a stationary
discrete random function depends on the difference between the moments
of the discrete argument, expression (6) may be rewritten in the form

Kdrl=Kulr, = ) Wilki, e} D) Wilks, elKylr+k— k],

k=0 =0

where ma—ny=r;, m—my=k,;, no—my=k,

The autocorrelation function K[z, ¢] is determined by the following method.

Assume that the input signal of the block with pulsed weighting function
Win, e}, which has the autocorrelation function K,lr, ¢}, is produced by a
shaping filter with pulsed weighting function W¥[n,¢]; white noise with
autocorrelation function of unit intensity, equal to ofn—m]/4/, is applied to
the input of the filter. This results in an equivalent sampled-date system
with the block diagram of Figure 4.

————————

Vinj : Zlnel Yinel
ETM—]}‘{ Yl T h e Ko l7ie]

FISURE 4. Block diagram of the equivalent
sampled-data system,




The pulsed weighting function of the equivalent system is

Weln, el= ), Weln— KWk, €],

k=0

[

Kadr, el= ) Welky, €] ) Welks, €] olr + k) — &2, O]. (9)

=0 k=0

In view of the filtering property of the o~function expression (9) becomes

Kodr, el= ) Welky, slWor+ Ay, €. (10)

=0

Thus, to determine the autocorrelation function K.jr, €] it is sufficient to
determine the pulsed weighting function Wv[n, ¢] of the shaping filter.
Analysis of Figure 4 shows that the equivalent structure of the system
under investigation is also a shaping filter, with pulsed weighting function
Weln, €], with white noise Vin] acting at the input and a random process with
autocorrelation function Kylr, e] at the output. Consequently,

Kylr, el= ) Welkr, 6] ) Welka. el olr+ ki — ks, O],

=0 k=0

which leads to an expression similar to (10):

)

Kulr, el= D) Welks, slWelr+4i, €l. (11)

=0

Once the correlation function K,jlr, ¢]is known and the difference equation for
the discrete shaping filter determined, the pulsed weighting function We[n, €]
of the equivalent system (or its transfer function We*(q,e)) can be found;
using the known functions W,[n, g] or W3*(q, e) it is then easy to determine
W¥in, €] or Wv*(q, ¢).

The difference equation defining the pulsed weighting function of the
equivalent system has the following form /5/:

DA, n, 6] Weln—m, el=Wa[4, 1, el 6 [n~m], (12)

whence We*(q,¢&)is determined as the operator quotient

‘*’n*(tl. 8)
V@)= g,50%
and thus

We* (9. ¢)
W (0.0 = Wy q.e) -




Substituting the expressions (13) for We*(g,+rand (1) for ¥W.*(g. ) in this
exnression, we obtain

W (g, e [+ W (g, W g W (g, ]

W ia.er = . *g. e )W.k(qg. e)Wo*(qg, e)

. (15)

which gives

ERd I WoE¢ ) - *
. g )W g W (g, 0)Wo* (g, OV . 16
Wrin el= 57 [ D, (g e W21 qe) Wo (g, ) sdg. (16)
Cm

Substituting this expression in (10) we can determine the correlation
function K. [r, €].

One can now use the funcuon K.fr ¢], the autocorrelation function K.[r]
of the input, and fornula (7) to find the autocorrelation function Ay[r] of
the disturbance at any point of the controller block, assuming the pulsed
weighting functions W [n ¢l and Waln, e] are known beforehand. This makes it
possible not only to investigate the path of the internal disturbance in the
controller, but also to localize its effective region, corresponding to the
maximum correlation in the series of autocorrelation functions defined by
(7) for the various blucks of the system described by the pulsed weighting
functions Wy, [n, €].

l.et us consider an example. Suppose the system (Figure 1) has the
following parameters:

: K

Walp) = m‘il— Ky=08; T,=0.08 sec:

Wapy = o1, K:=24, T,=004 sec.
Tip+1

The autocorrelation functions of the signals are approximated by

K. {r, 0]=A,e 2/ =0.836e -2
K, fr. e]=A,e-vr+2l = | 56e-° 84 +:]

It is required to find -“he autocorrelation function of the disturbance, if
Kyipy=K,=2 is the amplifying component and the sampler produces
rectangular pulses with pulse duty ratio y =1 and pulse repetition period
T =0.02 sec.

in terms of dimensionless variables:

W(q) K, 1.2
NT)T T .. T 404
T IT—‘q+I q+0.5
and
W'o(g—)— Ko 02
T|] T, T og+025 "
7&]“}'1
where
=Tp: p=2_
9=1ip; p= 7.
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After reduction of the circuit as illustrated in Figure 2, we obtain the
feedback transfer function along the path of the disturbance:

w q __.l—e*q 1.2 . 0.2 (17)
¢l T g |g9+05 ¢g+025])"

Expressing (17) as a sum of partial fractions, we get

Cl C2 C3
w. —024(1—e—? .
e.1.(9) (1—e )[q—t71+£7—f12+4—43]

g1=0; ¢2=-05 ¢3=-025;
Ci=8; C;=8; Cy=—186,

it follows that

W, | (g, e)=192(1—e9) [—%+ o0

—0.58
e1—1 € +

e9—e~05

e9—e—025

49— g-02se }

e7—1]

e7—eg—05 21— g—0.25

W, (g e) =192 [1+

e—95¢ L 2 el e—0258 ] B

Substituting this expression into (1) and rearranging, we obtain

e27—1.59¢740.616
* — —_
Ws* (9, 2) =0466 1530 10.630

The transfer function of a filter which produces a random process with
autocorrelation function Kylr, €] is known from /5/:

e9
We(g,2)= Py VA, (1—e-%y)e= a8,
and after substitution of the values of 4, and «, this becomes

ey
* = -
W (g, ) =044 ;200
The 'transfer function of a filter which produces a process with auto-
correlation function Kilr, e] at the output is

We*(4,8) _ 044 €% (29— 1.58¢9+0.63)
Wi*(q.8) (e7—0.43) (e27— 1,59¢7+0.616)

WV*{q,e)=




Applying the inverse D-transformation to this expression, we obtain the
pulsed weighting function of the filter:

T
Win, e]=D-! [‘;zer((g'j—))—] =1.63e%"+2.43e7," — 4.07e21" .

& €

From {(10) we get

K:lr e]=165 Z o9k pm(r k) 0094

k=0

< >
+ 2’43 Z e -9 12&;8—(r—k5) »0.42 +407 Z e—O 81k, e—(f*kr’ 084 —
s

k=0 B =0
=5.460-009 4 2.98p~" 427 — 4 220084

The required autocorrelation function of the disturbance can now be defined.
using

Keolr, 01=K\2 - Kifr, 0]=3.34 . ¢-0097

whence

KII[’I= K::[r] - I\'Xx[r] =
=2.120-00% + 2 G8~042r — 4 22¢-084r
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L.A. Gipsh, V.P. Peka

DETERMINATION OF OPTIMAL STOCK LEVEL
FOR RANDOM DEMAND

A method is described for determining the optimal stock level when the demand tor the commodity 1s
random (Poissonian), An optimization criterion 1s chosen and the functional equation of the optimal
stock derived for a fixed time interval.

Consider a stockpile of items (spare parts) subject to a demand of
random nature, distributed according to a Poisson law:

Py =e-r 2D (1)

H E]

where P(i)is the probability that { demands [each for a single item] are
made in the time ¢, and A is the intensity of the demand.

An amount v of items is stored once in the entire planning period. The
unavailability of a single item in the stockpile at the moment of demand
entails a loss of Q rubles.

The cost L of holding unit stock per unit time (one day) (the stockholding
factor) is:

where ¢ is the cost of an item, n the annual percentage income from
outlay, and 365 the number of days in a year.

The optimal stock level is determined by considerations of economic
expediency. All other considerations may be either reduced to the former
or formulated as constraints. A suitable index for the optimal stock is
thus the minimum sum of the overhead expenses involved in holding the
stock and cost of not being able to meet a demand.

In its most general form, the functional minimizing these losses may be
expressed as the sum of the following two products: the stockholding factor
L multiplied by the amount of stock and their holding time, and the penalty
factor Q multiplied by the number of unsatisfied demands:

F(vo)=min[L 2 w—i) (W1 —pt) +Q Z (i——v)P(i)]. (2)
i=0

i=y1




where v. is the optimal amount of stock, { is the number of demands, and
i the expectation of the time of the i-th unsatisfied demand (failure).
The expectation >f the timie of the i-th failure is

Q

,
wi= [ L@ casr [, (3)
“

i

where [ is the duration of the planning period and j:(t1the probability

density of the time of the {-th failure.
if the failures okey a Poisson law, the probability density of the time
of the (-th failure is governed by an Erlang distribution:

o= nipigi-t (1)
Jet) ===y

Substituting (4) in (3} and integrating, we obtain

e —-—l—[().i"t"—%i}.‘*zt“'-f~[(i— Pypi-dpi-24 .

A (i—nt
) U . i
. ops AL Y N
=) oL 20% 4 = +e t———————“ I [re-te-t 4

= 22 (= D) (=2 M 334 L+ (i— 1)),

AMultiplying the second expression in square brackets by ¢, dividing out

. I
[S3Y e»«!(i__w, and collecting like terms, we obtain

S (L Ry VRS2 f— 1) A2
i e x =1 [ AL 2(i— 1) +

£BU— 1) (=) M= =) (= 1)+ LT] =

[(A) =Y+ 2(i— 1) (At)i2+

R T PRy 1
= ay TESS)
+30G 1) (E—=2) Oy 3+ ... +(i—l)(i—l)!kt+i!]} =

[ P Y (A2 (Az)i-3
= '"[‘“" 1[(4-—1;1 2 Py t

A
= A

Subtracting p.f from ptee

: 3 Py
Pla 1—tsf == f;-{l—e-‘“['—x—.z—’—- + Lro) ] 4+ FAt+1 ]} =

i (i—1)
R R S DY)
X [l ige A ——j! ]
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The final form of (2) is

H

Foy =LY tv=i) %[1_ 3 e (Aﬂt)f] N

i=0 J=0

+Q Z (i—v)e-# ——-(Ai!t)i.

i=yt1

()

Note that if v>>At the following expression is a good approximation for (5):

(r 1)
i

F(v)=L2—”2_l‘f— +Q D) (i—v)en

i=y+]
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L.A. Gipsh, V.P. Peka

DETERMINATION OF OPTIMAL STOCK
LEVEL FOR A GROUP OF CUSTOMERS
UNDER CONDITIONS OF RANDOM DEMAND

A centralized svstem supplyiig a group of customers is considered. A madel is set up 1o determine the
aptimal central stock level, with an algornthm for its distribution among the customers. The problem i
sobved o the assumption that the demand at the points of disiribution ts Poissonian.

Consider a group of customers, each with his own stockpile, and a
central stockpile which is used to replenish the customers' stocks (local
stockpiles). The central stockpile is provided with an amount Y of stock
once during the entire planning period T (say a quarter year). The stock
in the local stores is replenished in lots of fixed size y—x when their stock
level falls below a given level x. The time required to deliver the
commodity from the central stockpile to a local one is =.

The stock level Y, the lot size y—x, and the critical stock level in each
local stockpile must be chosen in an optimal manner, i.e., so as to
minimize the expected cost of holding stock and the cost of not being able
to meet a demand. To determine these costs we use the stockholding
factor, i.e., the cost of holding unit stock per unit time, and the dead-time
factor g, i.e., the cos: of the customer’s dead time as a result of the
unavailability of the article during the time v required for rush delivery
from the central stockpile or the manufacturer.

The demand is assumed to obey a Poisson law

P(i)=e-)‘t(7‘——.t|)‘ , (v
i

where P(i)is the probability that i demands are made in time ¢, A is the
intensity of the demand.

We shall determine the stockholding cost in the local stockpile during
a single cycle of the supply process, i.e., during the mean time between
successive replenishments.

The mean time between successive demands at the local stockpile while
the stock level is varying from y, to x+1lis

1
o
= (2)




Then the stockholding cost Ly is given by the expression

Ik
i R
Ly=1- - Z (yn—1i),

F==xpt-1
or,equivalently,

yp—xp—1

L=t 3= 31 (i), (4)

i=o0

where i is the amount of the demand, y. is the initial stock level in the k-th
local stockpile, x; is the stock level at the k-th local stockpile at which a
replenishment order is made to the central stockpile, and A is the intensity
of demand at the k-th stockpile.

However, during the time v required to fill the order from the central
stockpile more demands may be made at the 2-th local stockpile, and the
stock level may fall below xx. Consequently, after delivery of an amount
yr—xwfrom the central stockpile, the stock level in the &£ -th local stockpile
when the new supply cycle starts is less than yx. The probability that the
new cycle will start at level yx, or, what is the same, that no demands are
made at the k-th stockpile during the period w, is

P(0, 1) ==,

where 1 is the time required to fill an order issuing from the £-th local
stockpile.

The probability that the new cycle will start at a level yx—1may be
expressed as follows:

P(1, 1) =e— % ——}“i“ etc.

T
Expression (4) now becomes

Yp—xp~1 i ;
Li=tg 3 (=) 3 et BBl
=0 j=0
The stockholding cost during the period w is
3

Le=1 D) Gn—i) (ki —m5),
i=0

i=

where pi* is the expectation of the time of the i-th demand.

= f fa(tyt dt -+ f o




where [i(f) is the probability density of the-time of the i-th demand.
In our case (assuming a Poisson distribution of demands) this density
15 Erlangian ;2

e‘ikt )-k’ -1

L= =11

(8)

Substituting (8) in (7) and integrating, we obtain

[l_ Z Ze e (.«m)]

f=0 a=0

A detailed derivation of (9) may be found in ,4;.
The final expression for the stockholding cost during the time 7w 1s

e
Lk"=172((\7h—l)(l-ze . (r‘u’n);) (10)

i=0

The average number of cycles in a quarter year is
(11)

The total stockholding cost during one supply cycle at the k-th local
stockpile is now obtained by adding (5) and (10):

Yr—xk—1

f
L= l —Al— Z (yh—l) Z e-—-lktk ()\uk):

i=0

Xp i
e 2 m-u( 1= 3y e ek )]—f} (12)

i=0 j=0

The cost of not being able to meet a demand at the local stockpile is the

product of the factor g and the expectation of the number of unsatisfied
demands during the time 1. For a single supply c¢ycle, this is

Q=g 2 et BT, (13)

=xp+1

and for the entire planning period

Qr=9 Z eyt (P Th)® (}kTh) (i—xp) - T

i=zptt Yrn—xn




We now determine the stockholding cost in the central stockpile. With a
sufficient degree of accuracy we can assume that the flow of supplies from
the central stockpile is Poissonian with parameter

A= D) M (15)

B=1

where z is the number of local stockpiles.

The cost of holding an amount of stock Y in the central stockpile for time
T is determined in the same way as the cost of holding an amount xx at the
local stockpile, using expressions (6)— (10).

The formula for the central stockpile is

y i
bt L3 ey (1_ S oot ifljm) (16)
=0 :

i =0

It must be kept in mind that the stock Y in the central stockpile is
limited, and thus it may happen that orders cannot be filled owing to
exhaustion of the stock. Let us determine the expectation of the time during
which orders from the local stockpiles can be filled, or, equivalently, the
expectation of the time of the Y-th demand at the central stockpile:

T o
wr= [iv- @ t-at+7 [ Fr0at, (17)
F 7

gAY AY Y-t

Fr (8) = —r=DT "

Substituting (18) in (17) and integrating, we obtain

i=0 j=0

y—1 I3
T _AL(Y_ TS e u]}'r)f), (19)

Dividing (19) by the planning period T, we obtain the availability factor Y,
i, e., the relative fraction of the planning period during which all demands
from the local stockpile can be fulfilled:

fp= g;_’ (20)

Multiplying (5), (10) by kr, we get the stockholding cost for that part of
the period T corresponding to uninterrupted replenishment of stock at the
local stockpiles. The cost of unsatisfied demands at a local stockpile
during this period is the product of (14) and 4, We now determine the
stockholding cost for the remaining part T—uy” of the planning period. In
this case the stock level at the central stockpile is Y=0, and the stock level




S, at the £-th local stockpile may have any value from y,down to x,+1with
equal probability, in view of our assumption that the arrival of demands at
the local stockpile is uniform. Thus

=S+,
and

P(Sh) = ——. (21)

Uy — Xy

The stockholding cost at the k-th local stockpile is (see (7)—(10})

Sp ‘ .
1 g Ty P (T—py T ¥

Ly=1 3 (Ss—i) i?( 1—/2; e =Ty Lol .(22)

i=1 : =

and by (21)

Ye Sk 1
Ly =1 Z P7Se) - Z (Sp—i) )-(1—
“k

Sp=xp4+1 =10

— 2 G_}\k(f—p.yr) [;""(T_p'}’r)}i .
(23)

)= it

The cost of not being able to meet demands at the local stockpile, due
to interruption of deliveries from the central stockpile, is the product of
the probability that all the local stockpiles receive demands exceeding the
stock level Y at the center and the conditicnal expectation of the number of
unsatisfied demands in each subdivision due to exhaustion of stock at the
local stockpiles, when the total number of unsatisfied demands is .

The probability that the number of demands exceeds the total available
stock by iis

, AT)r
P(Y+z)=e-”(”,ﬁ. (24)

The probability that a given demand reaches the k-th local stockpile is
the ratio of the corresponding intensity of demand to the total intensity for
all z stockpiles:

Le
= Ik 2
Py T (25)

The probability that exactly j demands reach the k-th stockpile when
there is a total of i demands at all z local stockpiles is determined by
considering a suitable system of Bernoulli trials:

Pr(j) = CiPygy=i, (26)

where Cy is the number of combinations of i items j at a time, and ga=1—FPs.

115




At the moment the stock Y in the central stockpile is exhausted, the &-th
local stockpile still contains S,. The expectation of a unsatisfied demand at
the k-th stockpile under these conditions is

u(Sn) = Z CiPuigyi=i - (j—S). (21)

J=Sp+1

The probability that the stock level at the k-th local stockpile is S; is

given by (21).
The expectation of an unsatisfied demand at the k-th stockpile due to the
central stockpile being exhausted is

Yr i
Mi= Z Px(Sk) 2 CilPyigyi=1 - (j—Su). (28)

Sp=xp+1 J=Sg

The cost incurred by unavailability of articles at the central stockpile is

Ty 4+
Qa=QZl“AT(1(\Y—i)—H 2 Z P (Sa) Z CIPWqié~i - (j—Sh).
i=0

k=1 Sp=xpt1 J=Spt1 (29)

All told, the cost of holding stock and being unable to meet demands
for all z local stockpiles and the central stockpile supplying them is

F(Yxh,yk)_LwZ(Lk+Lk'>+Qa+Zok (30)
k=1 k=

Substituting the actual values of L and Q in (30), we obtain the following
expression:

j=o0

Y i .
F(Y,tmy) =1 ) (Y=i) 7\1_(1— D e- AT%?)L)_‘_
i=0

yk~x,¢—l

J NN e (T
+321{[1K Z (.’/h_l)i_zoe‘)'kk—j!h—'(‘

i=0

xp B
o 1 (Agtr)! mT 1
—_ — — -~ A ASALLLTANN | PN T
+{ ,»_Zo (xx—i) " (1 Z o= Mt 5y ) T AT X

j=0

rY—1 i .
x (Y—Z Ze*”)% Z m(sh)z(sk—nﬂ( -

i=0j=0 Sg=xp+1 i=0

- Z =Xy ) [An(T— p’" )}’, +q E — AT *—(I(XYQZT—);TO X




z Yk i

X Z Z x(Sk) Z CiPyigui=i(j—Sr) +

k=1Sp=xp+1 J=8p+1
2 < - Vi
+ Z P Z o Mk (l;.h;rk) %
k=1 i=xg41
WT '3 < (AT)i
. Ar N « ;v
—xn) | y- a2} 31
X (i—xn) N AT( i_ZOi-ZOe i ) (31)

The value of pyT is given by (19).
The optimum values of ¥, x» and y, may be determined by minimizing

the function (31).
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S.G. Zvonov

APPLICATION OF THE TWO-DIMENSIONAL
Z-TRANSFORM IN DETERMINING THE
AUTOCORRELATION FUNCTION OF THE INPUT
SIGNAL IN A LINEAR SAMPLED-DATA SYSTEM

The two-dimensional z-transform is defined, a table given, and a method described for seeking the
statistical characteristics of the input signal of a linear sampled-data system with constant parameters.
All these problems are considered in relation to unbiased discrete functions of two arguments f(n, m),

The value of operator methods in investigations of automatic control
systems has long been recognized. Operator methods are applied to the
statistical dynamics of automatic systems in the monograph /1/, whose
main subject is continuous systems.

Together with continuous systems, sampled-data systems have been
extensively developed, and operator methods play an important role in
their analysis /2, 5/. Much credit is due to Ya. Z. Tsypkin for the
development and extension of these methods. The statistical dynamics of
sampled-data systems is studied in /4, 5, 6/, in which the analysis and
synthesis are based on the theory of finite-difference equations, the
basic dynamic characteristic of sampled-data systems in the time domain
being the pulsed weighting function.

We wish o investigate the use of operator methods analogous to those
considered in /1/, in particular, the two-dimensional z-transform, in the
dynamic analysis of sampled-data systems.

BASIC NOTIONS AND DEFINITIONS

Let f(n,m)be a discrete function of two variables nand m(n,m=0,1,2,...),
representing a two-dimensional train of §-pulses of a definite amplitude,
with period T=1 in each of the variables; the function is assumed to
increase at most exponentially, so that

If (n, m)1 _

rm)] (1)

7”00 Mecn+dm - 0o Mecn+dm

lim lim




where M, ¢ dare certain constants; ¢ and d are the growth indicators of
fin.myin the variables n and m, respectively.
The expression

F(z,2))= 2’ 2 [, myz=rzy m=2.[f(n, m)]. (2)

n-0 m=0

where z=e? z,=¢», pand p, being the complex arguments of the corresponding

Laplace transform, is called the two-dimensional z-transform of the

function f(n, m), and the latter is called the pre-image of its transform.
Formula (2) may be written

« . 3
F(z,2))= 22_" Zf(nrm)zl"", (3)
n=0

m=0

where the inner sum is the one-dimensional z-transform of the function
f(n,m) in the variable m with parameter n. Denoting the one-dimensional
z-transform in the variable m by Zn», we write

= ()
Znlf(n, m)]= Z[(n.m)z]-'"=Fm(n, zy) .
m=0
Expression {2} then becomes
Z ) ‘ (5)
F(z,2,)= 2 Fa(n, 21)z "=Z[Fn(n 2,)}

n=
where Z, denotes the one-dimensional z-transform in the variable n, with
parameter zi.
In view of (4),
F(z, 2 ) = ZAAZAf (1, m)T} (6)
and so
Z2=anm- (7)
Thus the two-dimensional z-transform is equivalent to successive

application of two one-dimensional one-sided transforms in the respective
variables; moreover, the order of application is immaterial:

Zan=ZmZn» (8)

If F(2,2)) =2Zdf(n,m)], the analogues of (6) and (7) for the inverse two-
dimensional z-trans’orm Z,-! gre

Zo~' =2, =171 (9)

and
f(n, m)=Z"'[F(2, 2,)] (10)
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Applying the inversion formula for the one-dimensional z-transform to
Zyand Zn, /2, 5/, we derive the following inversion formula for the two-
dimensional z-transform:

1 e — m—
i(n,m)=—zj—t—{ 55 56 F(z, 2;)2" 2/~ dzdz,, (11)

ley=e€ |z =ef

where lzl=¢° and lz)/=e? are circles whose interiors contain all the poles of
F(z, ;) as a function of z and z;,, respectively.

The basic properties of the two-dimensional z-transform are analogous
to those of the two-dimensional Laplace transform /1/; they may be
proved on the basis of (7) and the corresponding properties of the one-
dimensional z-transform /2, 5/.

2. RELATION OF THE TWO-DIMENSIONAL
2-TRANSFORM TO THE LIMIT ONE-DIMENSIONAL
TRANSFORM

In investigations of the statistical properties of discrete systems it is
often necessary to use functions of two arguments n and m, corresponding
to two instants of time in the operation of the system. In the steady-state
case it is convenient to introduce the new variable

I=n—m. (12)

To distinguish between transient and steady regimes in the performance
of the system we introduce the notion of the preset period of the system's
operation

N=min(n, m) . (13)

The condition for transition to a steady regime is N—o. When this
condition is satisfied the quantity /[=n—m has a definite sense, though both
variables n and mapproach infinity.

Thus, we must determine properties of the two-dimensional z-transform
which determine the behavior of the pre-image not only when n=o and m=-cc
but also when N—-oo.

Suppose some property of a discrete system is described by a function
f(n, m)whose two-dimensional z-transform is

o - (14
O(z,2))= 3 ¥ f(n,m)z=rz=m. )

n=0 m=0

The domain of summation consists of the entire first quadrant of the
n m -plane (Figure 1). Let us divide this domain into two domains G,and G,
as illustrated; summing separately in each of these domains and along the
bisector, we have

Ozz)= 3 3 fnmzra-me 3 3 fnm)zrm-n— 3 f(nmzar. (15)
n=0

n=0 m=n m=0n=m
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We now replace the variables nand m by {=n—m and N=min(n, m).
In the domain Gz, m>=n, therefore

(<0 n=N, m=N—1{. (16)
In G,we have nz=m, and
>0, m=N, n=N+1. (17)

After appropriate changes in the limits of summation, we obtain

@(z,2)= 3 (z.2)7 Z"f(x+/, N)z=l+ 3 (N, N=D)z'— f(N, .V):‘ . (18)
1=q

N=0 {=—co

It is clear that

3 N+ N)zt=Fi(2,N) (19)
i=0
and
0
S| HN N=Dai=Fa(2, N) (20)
=

are the one-dimens:onal one-sided z-transforms of the functions f(NV+{, N)and
F(N,N—1)in the varizble I, with parameter ¥, Thus (18) may be written

D(z, z)= Z (z2,) =¥ [Fi(2, N)+Fa(z, N) - f(N, )] (21)

N=0




Formula (21) is the one-dimensional z-transform of the function F(z, N) +F,

(z,, N) —f(N, N)in the variable V.
By the theorem on the finiteness of the one-dimensional z~transform

lim [F\(z, N) +Fa(zy, N) — f(N, N)]= tim =L @z, 2,). (22)

N~ 2z, 1 22

Let us consider some particular cases.
Let f(n,m}=[(n—m). Then [{N,N)=F(0), (N+1,N)=}i(l), and [(N,N—1)=f(—1).
The corresponding one-dimensional transforms are

Fu(z)= 3 hhz,
=0

—0r

Fa(z)= Z fa(—0) 2z,

1=0

and (21) becomes

O (2, 2) = 37240 IF) (2) +Fa(2) —[(O))

If (1) is an even function, i.e.,

fn, m)=f(ln—ml),

O(z, 2) = 2 [F (2) +F (21) =} (O)) (26)

p-#4)

However, if f(n, m)depends not only on the difference between the arguments
but also on N, then in the general case the input process is a transient
which approaches a steady process as N—»o, The steady-state condition
may be derived from (21) and (22) by setting

Nle Fi(z,N)=F,(2),
NILIT:OFz(Zl, N) =F2(21),
ngn;f(N, N)=[(0).

Accordingly, we have

lim Z2=L @ (2, 21) =F1(2) + F2(2-1) ~(0).

w1 22

If f(n,m)=f(ln—ml), then F\(2) =F:{2)=F(z), and

lim =L 0z, 2) =F(2) +F @) ~[(0).

I g 1




Note that for a steady regime (29) coincides with the formula for the two-
sided z-transform /2, 3/.

3. RELATION BETWEEN THE TWO-DIMENSIONAL
= TRANSFORMS OF THE AUTOCORRELATION
FUNCTIONS OF THE INPUT AND OUTPUT SIGNALS
OF A LINEAR SAMPLED-DATA SYSTEM

As shown in 4/, the autocorrelation function Ky(n, m) of the output signal
is related to the autocorrelation function K.(n, m) of the input signal of a
nonstationary sampled-data system, whose pulsed weighting function is
wi(n, m), by the formula

K, n,my= Z Z w(n, Dw(m, kYK (L k). (30)

=0 k=0

Multiplying both sides of (30) by 2-*2,-» and summing over n and m from 0
to ~, we obtain

oy

Z 2 Ky(n,myz-rz,-m=

n=0 m=0

m=0

D> wn e m K k) |- (31)
_l=0 f =1}

1M

Denote the two-dimensional z-transform of the output-signal auto-
correlation function by ®k,(z, z/), and change the order of a summation on
the right-hand side; then

=<0 k=0 n={ m=R

Dy, (2, 21) = }i 2 K,(l,k)[ iu (n 0 z—"i w(m,k)zl-’"], (32)

By analogy with the incomplete one-sided Laplace transform, we call the
expressions in square brackets

Z win, z-"=W(z, 1),
=t (33)
Z wim,kyz,~m=W,(2), k)

m=k

the incomplete one-siced z-transforms of the weighting function.
Therefore, (32) may be written

o o

Dk, (2,2))= D] D} Wiz, O Wi (21, k) Kz (1, k). (34)

=0 k=0




Thus the two-dimensional transform of the output-signal autocorrelation
function is determined by the input-signal autocorrelation function and the
incomplete 2-transforms of the weighting function.

For stationary systems we have

Wiz, () =z~'W(2); } (35)
Wiz, k) =2,7*W(2)),

where W(z) is the transfer function of the system.
Substituting (35) in (34) and denoting the transform of the input-signal
autocorrelation function by ®xx(2, 21), we obtain the equality

Ok, (2,2) =W (2) W (2) Dk, (2, 21), (36)

which determines the transform of the output-signal autocorrelatior function
for a system with constant parameters and weighting function w(n—m).

4, AUTOCORRELATION FUNCTION OF THE
OUTPUT SIGNAL

LLet us consider the case of a sampled-data dynamic system whose input
is a steady random signal x(n) with autocorrelation function K:({) ({=n—m).

The two-dimensional z-transform of the output-signal autocorrelation
function is then given by (386).

K«({) is an even function with one-dimensional transform

Fe(2) = 2 K. (D)2,
=0

so that by (26) and (36)

ZZy

®Kx(zr 21) = 22— I

[Fx(2) +Fx(21) —K:(0)]; (38)

22y

O, (5 21) = Sy

W (z) W(z1) [Fx(2) +Fx(2:) —K:(0) . (39)

The one-dimensional z-transforms of most autocorrelation functions may
be expressed in the form of a proper fraction

(40)
The same holds for transfer functions of sampled-data systems:

_ Q2
W(2) RGY -




Let us write (39) in the form

D, (2.21) = ot (W (2) Wi2) Fal2) +

1 {42)
+W(2) W(z1) Fxla1) =W (2) W(z) K:(0)]
and express W(z)and W(2) Fx(2)as sums of partial fractions:
. N Az
W(z)= [ S, 43
(2) ; vt (43)
r+v B
= k2
W(2) Fa(z)= D) 20— (44)

k=1

where a,-=e“xi , ay=e~*, and r are the numbers of poles of W (z) and Fx(2),
respectively.
The coefficients of the expansions are determined by the usual rules:

_ Qan
A= ey (46)
Qlar) L{an) -
= Hlde) 2lan) 4
"7 {Ri@) N(a)Y (47)
Similarly,
W(z) = Z__.z"‘f;i . (48)
3 rdv Bk 2,
W(2) Fx(z)= 3, i (49)
R=1

Assuming that all the poles of W(z)and Fr(2)are simple and that these
functions have no common poles, we use (43), (44), (48), (49) to transform
(42) to the form

r r4o r r
Ok, (2,2) = Z Z A; By F(ai, ax) ~ } K<(0) Z 2 A, Ax F(ai, ap), (50)
i=1 k=1 =1 k=1
where
F(ai, ay) = =2 [ el + 22 J (51
(@ ax) zn—1 | (a1—a) (z—ay) (z—a;) (21— ax) )




To determine the autocorrelation function we must return to the pre-
image space. Using the linearity of the direct and inverse two-dimensional
z-transform, we find that (50) corresponds to the following pre-image:

r or+v r

Ky(a,m)= Z ZA,- Br Kx(ai, ax) — 4K (0) Z 2 A; Ay Ko (ay, ar), (52)

fz=] fpasl i=1 k=l

where K,(ai, ax) is the pre-image of F(ay, ar).
Let us determine the pre~image of the transform

F(z,2)=

(z—aq) (z1—au) * (zi—aq) (z—an) |

zz1—1

224 [ 22y 22y

Writing the inversion formula for the expression

22, 22,

Fi(z.z) = 22— 1 {z—a;) (z1—ax)

for nz=m in the form

= 1 2 -1 _l_ —_ﬁlz___ -1
fl(n'm)—'an Z—aiz [21\',] 954(221—1)(7.;——%)2“ le dz

|2|=ef {2l=e

and using the Residue Theorem, we obtain

fun my = T2 [1— (@ a) 1, : (55)

—a; Gk

To find the pre-image of Fi(2, z)for m=n, we must rewrite (54) in the
form

fl (Il, m) =
-1 2 met] 1 _Zn
T 2§ 56 —ay 2n ¢ (zz;— 1) (z—ay) Zldz | dzi.
12| e 18] =e€

Application of the Residue Theorem yields

aym—n
-‘—:‘-a-;-‘;; [l— (a(ak)'ﬂ.l], mz==i.

fr(n, my= 4
We introduce new variables for the domains G, and G, (Figure

I=|n—ml and N=min(n, m),

since in the domain G, (n=m)

and in Ga (m=n)




In terms of the new variables, formulas (55) and (57) become

hin,m)=

a;:'t .
T I @a)v = |
Lk

158
Cw
fitn.m)= | -—~a;ax

[1—(a:an) V-1, mz=n. ‘

The pre-images of the transform

e = ] . ed
Folz 2 = oo e e—an)

for n=m and m=n differ from (58) only in that a;and a are interchanged.
Thus

W
dnmy = —2 [ (aan)¥Y, n=m,
1—~a.ay (30)
. a,‘“ i Vil i
foln.m) = == - (aa) ¥ mz=n

Adding (58) and (59, we see that for all n>0 and m=0 the two-dimensional
stransform (53) has the pre-image

F = ——_— 1% 1t — V-l )
[(n, m) “aa (@t a1 = (ayax) ¥ 60
Let us consider some special cases.
1. One of the terms of the transform ®k,(2, 2} has the form
& 2zz,
Fla.a)= zz2i—1 (z—=a)(z;—a) (61)
Setting as=a;in (60), we obtain

N

flawa) = 225 (1 g 1), (62)
]—0:3

2. When a—1, the right-hand side of (62) becomes an indeterminate

expression of the type g— . Using I'Hospital's rule, we find that the transform

22y 2z,

FLD = T Toha=D

(63)
has the pre-image

FL, 1) =2(N+1). (64)




3. If ax=ai1, the right-hand side of (60} is again indeterminate;
reasoning as before, we see that the two-dimensional transform

iy p4) 41 22y
Flay a7ty = zz,—1[<z—a‘~> @=an  @—a) <z—a‘—*>] (65)

has the pre-image
F(as, @) = (N+1) (@ + a1y (68)

4. When a;—0, the two-dimensional transform

2z
F(0,0) = #—r

has the pre-image

Lif /=0,
[(0,0) = { 0 if 19£0. (68)

The function (68) coincides with the lattice o-function /4/, which is the
discrete analogue of the Dirac §-function for (=n—m:

_{ U if a=m;
"(”_"‘)‘{0 if nstm. (69)

We collect all our results in a table of transforms and pre-images, which
contains all the data required for determining the statistical characteristics
of the output variable in a sampled-data dynamic system.

TABLE 1.

Transform F (z, z,) Pre-image t (n, m)

2z 1 if a=m,
2z,—1 on=m)=1{ 5 if nstm.

22; 222z —mi
#-T G @@= 2(N+1), N=min(a, m).

22y 222 2al {=n—m
ez Zm 1—at (V] .
-1 G-a) (zi-a) g L S

221 2z 22
zz,—l[(z—a)(z:—a—‘) + (z—a—')|(z|—a)] (W+1)(a"+a=tt)

22 [ 22 22 ]

! g,
P l(z—as) —an) + =) @ —a0 aian (@ +ax®j[I— (a:an) ¥}

1—-

a,=e—HM,; ax=e—*r .

Using Table 1 and formulas (50), (52) one can solve various problems
in the statistical analysis of sampled-data systems. In so doing the
presence of the factor [I— (aa)¥+!] in the component (60) of the




autocorrelation function makes it possible to use the table and the formulas
to study transients in sample-data systems.

5. EXAMPLES

1. Let us find the autocorrelation function at the output of a sampled-data
system with transfer function

Wi(z) = 1.422—-1.0682z
7 —1.5562—0.607 (70)
when the input is discrete white noise of unit intensity, whose auto-
correlation function is K.(n,m)=0a(n—m)/4/.
The two-dimensional transform of the input-signal autocorrelation
function is, according to Table 1,

2z
zz -1

Dix(2,2) =
In applying (43) — (49), note that

z 0.4z

Z_e- 0 T F _g-0s (71)

W(z)=

and
ay=e%2, A/ =B=1,
a;=e7%3, Ay;=B,=0.4.

By (50) and (51),

_z 22 0.4z22,
Duy(z,21) = zzp—1 [(z—a,)(zl—a,) + (z—a) () —az) +
04 zz, 0.162z,
T Ga)(m—a) T z-am)(zm—a) |’ (72)

Using Table 1 and forraula (52), we find the output-signal autocorrelation
function:

Ky(n, m) =3.035¢-02ln-mi{[] — g ~04{¥+1] £ 0.335(1 4-e-01In-ml}
X[l —e ~0SV+D] £0,117e-0 1tn-mi[] — g—-06(N+ D]}, (73)

Letting N—= in (73), we can determine K,(n, m)for the steady regime.

2. Let us determine the transfer function W(z) of a discrete filter which
transforms discrete waite noise of unit intensity into a random process y(n)
with autocorrelation function

K,(n, m) =D e-alr-mi, (74)




By Table 1:

22y zzy D(1 —e2%)
22— 1 (z—e~%) (2, —e-*)[l —e-2*W+1] ’

Dk, (2, 21) =

2Z
Ors(2,20) = 2o -

Using (36), (75), and (76), we have

zzy D(1 —e2%) _
—e*) (21 —e~ )1 —e-2=Ws1]

—p-2%
V(z) = z_a‘ll D(l_ et
z—e ] —e=~2 % (N+1)

For the steady regime, we let N-—o in (78) and obtain

V()W (2) =
(=

whence

W(z) = ZyD(1—e"™) (79)

z—e~%

Formula (79) was obtained in /4/ in the form of a difference equation.
The author is indebted to A. N. Sklyarevich for valuable advice and
assistance.
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Ya. Ya. Osis

MINDMIZATION OF THE NUMBER OF CHECK POINTS

[re suthor considess the ginamization of the nutther of chcck poeats tor the state of 5o ainkes et
the [atter belnd represented by 3 so-catled Zraph-nindet

(e ovence of the mcthod 2 to fnd msimal extoenalin stanly suhsets oF cadeworo s mraph, Alsosthin -
A Zbeell tof sputivn ot thie proclonr ena computer,

The propesed graph-model s, 2l he used for localization and Jefoorean of

tardip ey are Jdispornt,

In this paper we consider the problem of minimizing the number of
check points or diagnostic-information outputs, To this end we propose
the representation of complex mechanical, biological, physiological and
other systems by graph-models; the method may also be used to
develop procedures for detection and localization of errors.

From the mathematical viewpoint the graph-model of a svstem is given
by the following data:

1} a finite set of parameters {(symptoms)

X={a. b,c,...,x 0y, 2},

the vertices of the graph;
2) a finite set of edges U, where

NU=4,
3} a ternary predicate, the incidence predicate:
P(x,u, ), x,y< X, usl,
4} statement formulas
Vo ulPlouyy—+ 1Py, 4, x)k (4)

5) 3 xP(x, u,x). (5)

By (3) and (1) a graph-model is a directed graph. Formula (5) states
that the graph may contain loops at single vertices. Since the graph may be
disconnected, the parameters of the system under consideration need not be

correlated.




The more reliable the initial information, the more reliable the graph
as a mathematical model of the gsystem. Once the graph has been set up,
one can use the formal mathematical apparatus of Graph Theory /1/.

We first formulate the basic idea underlying the algorithm for
minimization of the number of controlled parameters by means of a graph-
model of the object. The number of vertices (parameters) in the graph-
model is reduced by mapping the vertices rejected in the minimization
process onto the remaining vertices by considering the shortest path from
the former to the latter:

=1, (8)

where [ is the number of edges in the shortest path.

Thus any member of the initial set of vertices is either a member of the
minimizing subset or is the initial vertex of an edge whose other vertex is
in the minimizing subset.

Mathematically, the problem is solved by finding the minimal externally
stable subsets of the graph. An externally stable subset of the graph is a
subset

T < X, (7
which satisfies the formula
Vx(x€X, x ¢ T (IxNT# @) (8)
where Ik is the image of X under the (many-valued) mapping described above.
We are not interested in the whole family of externally stable subsets T,
where
Xer. Ter, (8)
but only in the minimal subsets:
Foin = T, Tettn € {imin . (10)
where I'ma is the family of minimal externally stable subsets.
There is a well-known algorithm, due to C. Berge /1/, for finding Tmu;
it is based on repeated constructions of graphs.
In this paper we try to establish algorithms which are more formal in
nature and more suitable for computer applications.

A theoretical approach to the definition of Ims may be based on the
equality

Toin = (P U L) (B UT) - DL UL NN U T, (11)

Vx(Ix = I

To €l x€Tx (12)

Vx(Fe=TmUTlmi,U...UTY), (13)




Theorem. If T4 7, then the minor
D=1]d..:}.
of the matrix €. consisting of the rows, such that
vs(s=IAas &€ L)
and the columns, such that
V(= L)
satisfies the condition

Vs3r(d., =0).

Since the algebraic algorithm is a matrix representation of externally
stable subsets, the proof follows from (8). The minimal externally stable
subsets are those satisfving (29) for ¢=+¢,,

In practice, T,, may be constructed by considering the vertices for
which the sum of elements of the corresponding rows of Cis minimal:

S o=t (30)

j=1

and the vertices with maximal sum of elements of the corresponding
columns of the matrix D:

Z dsy t="FRimay (31
s=1

Corollary. All the externally stable subsets contain vertices
corresponding to zero rows of the matrix C, i.e.,

Vi(ri=0—i<T). {321

Let us consider an example. The adjacence matrix of the graph of Figure 1
is




For t=1 and t=2there is no matrix Dsatisfying condition (29). For (=3 we
get four matrices:

e
b 0
g 1

Dy=

Thus ¢, =3, i.e., the minimal externally stable subsets consist of three
elements. The sets T, themselves are given in (21). Note that all T,
contain the vertex a{corresponding to the zero row of A), so that condition
(32) is satisfied.

The algebraic algorithm is sufficiently simple for computer realization.

In conclusion, we remark that the graph-model is a detailed structural
representation which takes into account all interconnections between the
parameters, and may also serve as a mathematical model for the
investigation of other logical and information processes which require no
knowledge of the quantitative relations between the parameters and their
dependence on time. This formulation of the problem is characteristic
not only of numerous problems of control and diagnostics; it is also
applicable to empirical mathematical descriptions of complex biological
and physiological systems. In the opinion of the authors of /3/, it is
difficult to represent the latter by analytic mathematical models such as
systems of algebraic or differential equations; other types of models are
needed, among them also qualitative causal models. In addition, our
approach makes it possible to carry out analysis of the object with regard
to localization of errors, if the superposition of the functions (parameters)
is discontinuous.

In the future we propose to improve the graph-model technique by the
introduction of weighting and probabilistic categories, and by allowance
for the demands of specific problems of control and diagnosis.
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L.N. Volkov

AN ENGINEERING METHOD FOR ANALYTIC LEAST-
SQUARES OPTIMIZATION OF REALIZABLE SYSTEMS

In solving certain problems involved in the least-squares optimization
of systems whose input consists of random signals with nonzero expectation
g(t), the functions g(¢) are expanded in Taylor series over some time
interval. Solution of these problems yields pulsed weighting functions
which are quite difficult to realize /1, 4/. However, by choosing a
suitable representation of the function g({) over the time interval, one can
obtain the optimal pulsed weighting function in the form

k(1) = Z Dil=%* +D .4y 8(1), 120, Rea,>0. 1)

i=1

Moreover, as we shall demonstrate below, the number of terms in this
expansion is easily determined before the actual solution of the problem.
It is known /3/ that the pulsed weighting function in the above form is
easily realized by means of elements with constant lumped parameters.
The following problem is therefore of interest.

The input of a linear dynamic system with constant lumped parameters
consists of a useful signal y(f) and noise n(f); both signals are given in
statistical terms. The expectation of the useful signal is g(f), nonzero at
t=0, either decreasing as #~~ or periodic.

The central useful signal m(¢) =y(¢{) —g(¢) and the noise n(?) are stationary
random uncorrelated functions with autocorrelation functions Rm(z), Ra(zx),
respectively. The desired signal at the output of the linear system is &(¢).
The pulsed weighting function of the ideal system, which converts y({) into
A(t), isx(t). Let the output signal of the actual system be x(¢); then the total
error of the system e(f) =x({) —h(¢{) may beé expressed in the form

e(t) =sran (f) +edyn(t),
where

san(® = [ @t—k@dr— [ mt—vx@de-
9 —o0




is the random component, and

¢ ¢
edyu(t)=fg(f-f)k(r)dr— fg(t—r)x(‘t)dt (3)
0 —
is the nonrandom (dvnamic) component, where

@(t)y=m(t)+n(t).

It is required to find a system with pulsed weighting function (1) with
minimal sum of squared errors,

gl=e .7 +v euv.nQ' (1)

where
= [ [ Ry —@)k(m)k(O)dTd -

(1]
—2ff R (t—8)k(T)%(8)dTd O+

0 —oc
+ fme(r—G)x(r)x(O)drde (4a)
(see, e.g., /4,);
oc ¢ ¢ 2
e\;}n=f fg(t—r)k(r)dr—- fg(t——r)x(t)dr dt, {1b)
[ Q —o0

and v is a weighting fzctor.
In the general case, zs is known /1/, the autocorrelation functions Rm, Rn,
and Ry of the steady s:gnals may be expressed in the form

m t
Ru(z) = 2 Ae~bilsd ; Ry(n)= Z Aje=bild

j=1 Jm=m+1 (e
! 5
R (x} =Rm(v) +Rn(x) = 2 Ase=bildl.
J=1
et us express the function g(¢)in the form
g(t)y= Z dre—8xt | (52)

k=1

This is possible both for a decreasing or periodic function of time, and for
a polynomial in ¢t over a finite time interval. In many cases the signal (5a)
is an exact description of the different physical processes.
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Solutions of the above problem are known for various particular cases
(see /1,4,5, 6/, and others); however, these usually involve auxiliary
functions /4/ or two-~dimensional Laplace transforms /6/, which complicate
application of the results in engineering practice.

Below we present a general solution of the problem which is both simpler
and more suitable for practical applications.

Using the usual variational method (as in /4/), we derive the condition
for eofk(t)] to be a minimum with respect to k{z):

[Ryx—®)E(@)d8— [ Rm(z~O)x(@)d6+
o —00

+V]og(t-r) [fg(t—e)k(e)de— fg(t—e)n(e)de]dt=0. (6)

Substituting (3), (5), (5a) in (6) and transforming the resulting expression,
we obtain

I3
Z Ae bt [

i=t

1 i ] 00

i j=1

‘ s
Y 245 dpd
~‘-21De ‘[Z az ]2+V§k§——ﬁ_~—{-gﬂ +

r r

o 3 B [ B on) -

p=l k=1

ca I4
—e‘gk‘f f et e—2,t-8)y (8)d O dt ] —0. (7)
¢ —oo

Condition (7) will hold identically for all =0 if and only if the following
conditions are satisfied:

24; bJ dpdh . (8
%% _5 i=1.2 ... . n a)
a=b; 7Y ZZ (a;—gp) (ai+gn) L2.on

j=1 p=1 k=1

4

1

E Aje- /‘[ 1_21 f—'——b—, +Dn+1]

i=t

D 4 fe-b,lt—el %(0)d 8+

1=1

r r n
o B 3w [ Dl v -

p=1 kel

=) [2
—e—e.rf fe~e.fe—z,,u—6> %(8)d 8 dt] =0. (8b)

The first n equations of system (8) are identical in form and define the n
exponents a; of the optimal pulsed weighting function, the i-th equation
being an algebraic equation of degree /4+-r—1for g;. Solution of any of these
equations yields the same roots, so that to determine all possible values of




a; it is sufficient to zonsider one equation. Among the z(/+r—1l)roots of this
equation there are /+r—1 with positive real part, and by the condition R.a,>0
and equation (8a) these are the exponents of the optimal pulsed weighting
function. Hence it is clear that the number of terms of the optimal 4(t)is
the sum of the numbers of terms in the autocorrelation function Ry (t)and the

expectation g).
Thus the optimal system will be completely determined if we determine

the n+1 coefficients D; from (8b).
To determine the coefficients D; we must know the form of the ideal

pulsed weighting function (7).
We shall consider three types of x(r), which are the most important in

practice: filter (x(t)=06(x)), differentiation with filter (x(z) =8'(r}), delay with

filter (»(v)=8(t+1¢t,)).
In these cases substitution of the corresponding form of x(tr)in (8b) gives

the following equations:

H n m
D, <
; Ajf’_b/:[ '1 a—b, +D"+=J - 21 Aje~hs +
] . . i i i L (9)
dpd D,
+v e=€,° +D -1 =0
Z gpt+&n i [‘_I ai—gp ot

m

— Dl Abe b

1 n
Z xhé’_b/: [ ‘._2 a'_l:)_.ibj + Dy

‘=Ir r K n ~ q (10/
dody D;
. * 8,7t D —1|=0
+v 7lklgp+gh p[;ai_gp‘f' n+1 ]
p=1 k= i=
! n D m
=1 iml i=1 (\11)

4

n
dpdy D;
+-E ~gpT +D — e g0, | =0.
¥ 1 gp"‘gke s ( oy a;+gp ntrT e py]

-~

p=1 b=
It is clear from (9) —(10) that the total error is a minimum if and only
n
if k(r)= Z Die~%*+D, 186)involves all [+r—1lexponents a; (with positive

real par‘t's)l which satisfy (8a). In fact, equations (9) —(10) contain
{+r different functions of the variable 1, the coefficients of each of these
functions vanish simultaneously only if there are /+rdifferent optimized
parameters. The role of these parameters is played by the n+1 coefficients
D;, so that a necessary condition for the optimum is a41I=/+r.

A necessary and sufficient condition for equations (9) —(11) to hold is
thus the validity of the following respective systems of algebraic equations:

n

D .

;)T’ ai:bj +Dp 1 —1=0; j=1,2,...,m;

n

B _ i -0 j= : 12)
‘f'l"ai_bj +Dy41=0; j=m+1, m+2,...,0L % (12)
n

M D —1=0; p=1,2,....5;

tf-l-’a,—gp'f_ w1 op=12,....r
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n
Di . §— .
,; a—b; +Dp 41—-0;=0; j=12,...,m

n
D; . .
w—b; +Dp 41=0; j=m+1, m+2,.. .4

di—gs 4Dy +1—gp=0; p=1,2,...,r;

L 4D p1—evtf, =0; j=1,2,...,m;
J

: _+Dn+x=0; j=m4+1, m+2,.. .,
i

a;—b

n
i=1

n
I=1

D;
i —
Dy -g.t —0- =
E+Dn+l—e 3,,,.—0, p=1,2,...,r.

Fach of the systems (12) —(14) consists of [+r=n+1linear equations for the
n-+1 coefficients D;. Solution of the corresponding system for the D;leads
to the final determination of the pulsed weighting function of the optimal
system. Similar methods may be used to determine the optimal k(x) for
other functions x(t).

After determining the optimal k(1) we wish to find the minimal value of
the total squared error. To determine ey, we substitute the minimum
condition (6) and (4a), (4b) in (4):

502m1n=_Z“9d8 [ij(T*-e)k(r)d'r— _ZRm(r—e)x(r)dt }-{—

+vj fg(t—e)x(e)de [fg(t-—t)k(r)dr——

—'lg([—t)x(r)dr ] (15)

In the three cases mentioned above expression (15) has the form

€omin’ = me(r)k(r)dr—Rm(0)+
+v g(t)dt[ g(t-r)k(r)dt—g(t)];
JeoulS
emie=Rm”(0) — | Rm' (v} (x)d1—
| J

o0 t
—v f l 6[ g(t—r)ﬂt)k(r)d:—[g’(t)?}df.-

[




5445

et??mil:_—" me(T"ty)k(T)dT—Rm(O)—{-
o

o t
+vfg(t—t,,)dt fg(t-r)k(t)dr—g(t—ly) .
1] 4] (18)

The above results are clearly applicable to engineering computations
of optimal systems (for complex input signals — [+r=5—the expressions
easily lend themselves to computer solution).

The method may also be used to obtain a feasible solution for functions
g(r)involving a constant component. In fact, express the constant term d,
in the form d, e~ whereg,<<l; then use the resulting formulas to find the
optimal pulsed weighting function, in which none of the a; tend to zero as
g—0. One can also use formulas (12) —(14). setting the corresponding g
equal to zero in the equations.

Analogous results are obtained when g({) is a polynomial. In this case
g(t) has the represertation

gt)= 2 dutt-le-sy, (19)

=1
where g,—0, k=1,2,...,r.

By the same method one can determine the best system in the sense of
the minimal eun for given eyyr, Or vice versa (minimal eXynfor given £3;.).
When this is done the optimum condition is again equation (6), in which v
should be regarded as a Lagrange multiplier.

Our method makes it possible to solve a more general problem in which

r
g)= 2 du(tye-sy’ ,

k=1

3
du(ty= 3 dy, 7" (20)
v=0

To determine the coefficients d‘«v in the representation (20) of an
arbitrary time functionf(¢), the following formula can be used:

I dry—
G = Ty d e L (Pt e) W Flo)le=—a;

this formula is derived in /6/.
Let us consider an example. Let

gty =1—e-5 m(t)=0; Rp(x) =e-5t;
%#(t) =6(1); v=0.25 sec™!.

In this case d)=d,=1; A\=1; b,=5; g@1=0. g2=1; I=1; m=0 and (8b) is




+
(a®—g1?) (a?—g2?) * (a2—g:%) (a2 —g9?)
D, D,
a,—bl + az—bl
Di_, D
a—& az:— &1
D, D,
g 22 1 pi=0.
a—g " a8

Substituting the given coefficients in the first equation, we get

2 do? 2didz(a? — g1g3) ] —0:

+D3=0;

+D3~'=0;,

11a*—35.2502+6.25=0,

whence a,=1.74, a,= 0. 43; these values are substituted in the remaining
equations:

—0,307D, —0.219D, + D3 =0;

0.58D1+2.38Dy+ D3 —1=0;
1.35D,—1.75D3+4 D3 — 1 =0.

Solution of this system of linear equations yields the D;
D,=—0.188; D;=0.45; D3=0.097.
The optimal pulsed weighting function is thus
k(t) = —0.188 e~!74° 1 0.45 e~ %4%* 4-0.097 & (x).
The optimal transfer function is

_ 0.124p+06p+1
V(o) = 57+ 1) @32 1) °

This transfer function may be realized in the form of an RC-circuit /3/.
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RELIABILITY OF SYSTEMS

D 21,3019

A.N. Sklyarevich

INITIAL DATA FOR THE ORGANIZATION OF
PREVENTIVE MAINTENANCE IN A SYSTEM
WITH A POSSIBLE STRUCTURAL FAULT

Initial data are found for th: organization of preventive maintenance ina system with one possible
struernral faule: the prohability of a fault, the average required number of standby components, Methods
ate indicated for specification of the working time of the system and the preventive maintenance period.
[Throughout the paper we use the abbreviation p.m. for "preventive maintenance. "]

Consider a non-renewable system during whose performance a
structural fault may occur. It was shown in 1/ that relatively simple
graphical methods may be used to compute the optimal duration fw of the
working cycle of the system and to estimate the efficiency of the system
under deviations frora this optimum, provided the following factors are
known: the calender service life T of the system, the mean duration t,mof
p. m., the intensity  of faults, and intensity p of system failure when a
fault has occurred.

The main inadequacy of this method is that the quantity fymis assumed
known. In actual fact only certain components of this period may be
regarded as known —the time ¢; needed to locate a fault and the time ¢,
needed to repair it. Now,when the system is standing idle during p. m., itis
not necessarily true that a fault has occurred; therefore the equality

tom=1%1+4; (1)
is in general false, and must be replaced by an equality

tpm =ty +qty, (2)
where ¢ is the probability that the system, when idle during p. m., has

suffered a fault. In the general case g is a function of the working cycle of
the system, and so a more accurate equality is

tpm =t +q (&)t (3)

which shows that the optimal working cycle ¢, and the average p. m. time fpp
must be determined simultaneously. These data, and also the function ¢(¢,).
are basic for organization of the system and implementation of p. m. The
value of ¢(t,) governs not only the duration of p. m. but also the required
number of standby elements, if faults are repaired by replacing defective
components.




To determine the value of ¢(¢,), let us analyze the formula /1y

A

—e —A
F(t)y=e =245

(e——e-b9, (4)
which determines the probability of satisfactory performance of a system
with a single structural fault at an instant ¢, on thée assumption that all
other components of the system are reliable. The right-hand side of this
expression involves two terms: the first determines the probability that no
gtructural fault occurs during time £, and the second the [conditional]
probability of satisfactory performance during the same time interval, on
the assumption that a structural fault has occurred. Applying Bayes'
formula /2/, we see that the probability of the presence of a fault during
satisfactory performance of the system is given by the relation

| —e—v¢
q(t)= T
B —e— vt
A

v=p—A

Substituting f=t,in (5), we get the probability of the presence of a
structural fault in the system when p. m. is initiated.
The behavior of the function ¢(f), or that of its complementary function

(7)

which is the conditional probability that there is no fault in the system,
givenits satisfactory performance during time #, depends on the ratio of the
characteristics pand A, or, what is the same, on the sign of v.

Let us analyze the behavior of these functions, and of the simpler
characteristic

=28~ 2 (e,

(8)
which is the ratio of the probability that there is a fault to the probability
that there is no fault, both on the assumption that the system is operating
satisfactorily during time ¢{; we shall carry out the analysis for the three
possible cases: pu>A (v>0), u<A (v<0) and p=»A (v=0),

Note first that in all cases

g(0)=0, PO =1, r(0) =0, }
FO)=r POy =—h  F(0)=2,




i.e., the initial part of any of the experimentally determined curves p(t), g(1),
r(¢) determines %, which in turn determines the average time to the first
fault.

9(ty.

arcto A

FIGUSE 1. Craph of the function ().

If p>*(the average time to the first fault is greater than the average
time to failure of the system with a fault), then as t—~ the functions p(f). g(?),
r(tyasymptotically approach well-defined limits (Figures 1 to 3):

v_.
>

> r(°<»)=»i%, (10)

l. x) =
q(«)—“, p{=)

and, consequently, after a certain time during the operation of the system
the probabilities of the presence or absence of a structural fault are in
practice completely defined and in principle independent of the actual
performance of the system. When the value of 2 is known, any one of
these probabilities may be used to evaluate p.

Pt

FIGURE 2, Graph of the function p(t).

If A>p (the average time to the first fault is less than the average time
to failure of the system with a fault), then v<0, and so as t—+ (Figures 1
to 3)

q(t)y—~1;  p(t)—0; r(t)—ee,




i.e., after a certain time practically all satisfactorily performing systems
suffer a structural fault. It is obvious that in this case

tpm =t]+tr

and the value of pcannot be determined by finding the proportion of all
satisfactorily performing systems in which structural faults occur.

FIGURE 3, Graph of the function r(?).

FIGURE 4, Graph of the function &(z).

To determine the value of pnin the case A>p we suggest the following
method (Figure 4). After a certain time ¢ from the start of the system,
determine the function r(#*) and evaluate

_ri
= TE) (11)

Substituting #=#* in (8) and denoting

2= —vi*,




we find that the quantities &2 and z satisfy the transcendental equation
kz=e—1, (12)

which we solve for given k(e.g., by a graphical method, as in Figure 4),
finding the value of z and hence the required failure rate p:

n=>Ar-— (13)

=
Finally, we analyze the third case, A=y (the average time to the first
fault is equal to the average time from the fault to failure of the system).

7

If A=, then v=0 and therefore equalities (5), (7), (8) become

indeterminate expressions of type 8 Using de !'Hospital's rule, we get

i 1N
P(t)=m; q(t) = TTAE r{t)y=»xrs, (14)

and therefore, as t—x,
p()—0,  q@)—1,  r(t)—>=. (15)

Moreover, for all values of

r(t)
k= W =1. (16)
This equality may be used as a test for the condition A=p. It is clear from
(15) that, as in the previous case, if the system performs satisfactorily for
a certain time after it starts, a structural fault will almost always occur.

Now that we know how to determine the function ¢(¢)— the probability
of a fault in the systera for given 2 and p —we can find the time required to
implement p. m., and hence the optimal p. m. period. To solve the latter
problem on the basis of the dependence of the p. m. time on the p. m.
period, we suggest the method of successive approximations. We first
assume that the p. m. time is defined by (1), find the periodicity of the p. m.,
determine ¢({,)according to the working cycle #,, and then improve the p. m.
period. After several iterations a stable result is obtained, i.e., the
result remains practically unchanged upon further iterations. These results
may be used as initial data for the organization of p. m.

We shall now find the average number of standby components required in
the course of the calendar service life to replace unserviceable components
during p. m. Since the first p. m. cycle is implemented with probability
F(ty) and the conditional probability of a fault being found during p. m. is
glt,), it follows that with probability F{&,) ¢(¢) the first p. m. cycle will
involve the replacement of an unserviceable component. This means that
to maintain the first cycle for a single system an average of F(i,) q{t)
standby components are needed.

The second cycle begins with probability F(z) and end with probability
F2(t,). Since the strucrture of the system is completely renewed during p. m.,




the conditional probability of the occurrence of a fault during the second
cycle is found by the same arguments as during the first; therefore the
average number of standby components required for a single system in the
course of the second cycle is F2(¢,)q(f,). Similarly, for the third p. m.
period we have Fi{t,)q{t,), and for the N-th— FN¥(t,)q(t.).

If the calendar service life of the system involves N p. m. cycles, then
the average total number of standby components required for a single system
is

N
m=2 q(t)Fi(t,)

=1

— FN
m=q(lw)F(tw)1T_F_‘é%.
— (&)

Let us compare this formula with that defining the average working time
of the system during its calendar service life /1/:

(17)

¢
1-F¥(8)
T,,= I_—F(tw)—o F(t)dt

The result is

_ v auaF@).

m=
w
f F(tydt
0

(19)

Since ¢q(t,)F(t,) is the unconditional probability of a fault in the system
occurring during p. m., and

i ~ _@ ~ N
tw -~ tw -~ »

fF(t)dt

§ (20)

where N’ is the average number of working cycles of the system during its
calendar service life, we see that (19) indicates that the average number of
standby components required to guarantee p. m. is just the product of the
undonditional probability of a fault being found during p. m. and the average
number of working cycles of the system during its calendar service life.
This structure of the formula for m is obvious, though its derivation involves
rigorous arguments.




CONCILUSIONS

1. We have found the law governing the probability of the presence or
absence of a fault during performance of a system with one possible
structural fault.

2. We have improved the technique of determining the optimal p. m. time
and the optimal duration of p. m. for a system of this type.

3. We have deterrained the average number of components required for
replacing faulty components during the service life of the system (assuming
that the replacements are carried out during preventive maintenance).

Bibliography

l. Sklyarevich, A.N. and E.N. Tsvetkova. Optimal'nye sroki
polnoi profilaktiki sistemy s vozmozhnyminarusheniyami struktury
{Optimal Duration of Preventive Maintenance for a System with
Possible Structural Faults). — In press.

Venttsel’. E.S. Teoriva veroyatnostei (Probability Theory). Moskva,
Fizmatgiz. 1962.




Unec 621.3.014

L.P. Leont'ev

EVALUATING THE RELIABILITY OF A SYSTEM WITH
AFTEREFFECTS UNDER INCOMPLETE PREVENTIVE
MAINTENANCE —A SPECIAL CASE

An equation is derived for the reliability of complex systems with preventive maintenance (p. m. ),
assuming that the periods of satisfactory performance of the components and the time from failure of one
component to failure of the system are exponentially distributed. We obtain recursion relations for
systerns with two types of faults, which provide an estimate of reliability after any working cycle when
only one fault is eliminated or when both are eliminated successively.

In /1/ we derived general formulas for the reliability of systems with
accumulation in which incomplete preventive maintenance (p. m.) is
implemented at some time v, i.e., certain faults are eliminated, in
accordance with a preassigned schedule. It is of considerable interest to
estimate the reliability of such systems when the probability density of the
occurrence of the i-th fault is Awe~%/, while the aftereffect density, i.e., the
probability density of the time from the occurrence of the k-th combination
faults to failure of the system, is pre~#y, where pris the intensity of the
failures of the system following a combination of & faults. These
distributions are based on experimental data, but they may also be derived
from the physical nature of the occurrence of failures over sufficiently
varied ranges of working times.

It is known /1/ that the probability of failproof performance of the system
on the assun.ption that incomplete p. m. is initiated at the instant v, is
given by the formula

m

Pu(t)= 3 3 S(x. (An*x)Aly).

k=0 (=0

© Y 3 S(n, (Anix), (Ady) I, (Amtx). (AfY)). (1)

i=0 /=0

Asin /1/we shall assume that faults of type xwith intensities A, Az, As, ..., Amare
eliminated during the process, while faults of type y, with intensities
A, A, Ad, ..., A, are not disregarded.

Consider the unconditional probability Pm(t):

m

Pn(ty=2 3 S(u (An*x), (A49)).

k=0 (=0




P.(1)is the probability of satisfactory performance of the system in the
For exponential distributions
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time interval 0, 1.

k=0 {=0 x;=tx,=I| =t w=lu=1
roR+d e L,
hp kit ke LR 5
2 2 MAo. .  hpty t2 b (3)
Q’ (ﬁ;,.““...,_\‘l{,!ll‘ )

yi=1:=0
The formula for the conditional probability may be derived from the

equation
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Denote the intensities of component failures of type x by &/, 22,
4 ’ ’
I Y

intensities of the corresponding aftereffect times by u’, n2
Otherwise we

in the case that the components fail in the interval 0, 7.
Cr M Bz The mtensnles of failures

Ar, /2,..., M. ux, uo....,u'---, uly.,..v,:.

use the notation Ay ke ..., 5, . p2, ..
and aftereffects of type y are denoted by
Then equation (5) becomes

S (n. Adx), (Auix), (A Fy) /T, (AnkD), (Ay)) =

Z' 2 Zl Z'X (6)

Xy =1 gy=l+1 y2=l+1 Y=ttt

—-17 =1 n=ln=1
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e (U=S0) gpdtdty . dtf g, . . g (6)

As an example, consider a system with two types of faults, with
corresponding intensities Ay, f1, A2, M2, H12. Suppose that the fault with
intensity A, is eliminated in p. m. We list the possible events in the
interval (0, 1):

Case 1: No faults.

Case 2: One fault of type 1, none of type 2.

Case 3: One fault of type 2, none of type 1.

Case 4: One fault of each type.

The probabilities of these events are

Po(x) =e=A%;

Pi(v)= ——e—Ar(l—e vit);

T) e—Ar ([.._e—vgr)

1 1

— +
V2 Viz Vi Vig vi{(vi—vi2)

ny(’l') =3_A‘).1'K2{ e vt 4

i |
evet 4 ev12t e—vt
vz2{v2—wv12) viz{viz2—v1) viz(viz—v2) !

—Ain v2=U2—A2; Viz=uiz—A1— A

Equation (6) may be used to derive the conditional probabilities
corresponding to the unconditional probabilities (7) —(10).
Now the exponential law satisfies the relation
P{nft)=P(n), (11)
and therefore the conditional probability for (7) and (8) is the function
P(n)=Po(n) +Pz(n) + Py(n) +Paxy(n), (12)

where the corresponding terms of the right-hand side are given by
(7) —(10) for the argument 7.




Let us determine the conditonal probabilityv corresponding to the
unconditional probabilities (9) and (10). In this case the svstem starts in the
interval n with a fault of type 2 which occurred in the previous working
period. The next working period of the system (the interval n=¢—1) ends
either with one fault of tvpe 2 or with a fault of both tvpes. The conditional
probability of the former event is

P(n/z,y) =e- (2 +vm, (13)
while that of the latter is
. . “Bi(n—t) ‘
F(n/t, xy) = fe’ H et déy. (14)
0

The required conditional probability is

P(n/r,y)+P(n/r,xy)=e-An{“”’_“2e‘vz"— ] e""lz'i}, (15)

Viz— vz Viz— Ve

P(t) ={Po(t) + P=(x)}P(n) +
A {Py (x) + Pay () HP (nfv, 4} + P(nfv. xy) }, (16)

it fotllows that the reliability of a system with two possible faults one of
which is eliminated during p. m. is given by the following explicit expression:

P(t}=e‘-\’{l+ M (1—-6“"1‘)}{1—{- L (l—e-nm)+
Vi A\

1 ) 1

+ﬁ1(1—e—vm+mz[ e+
V2 Vivia vaviz Vi(Vi—viz)
_l* e~ 2" —l__g—“'lz"; + .__l___e—"‘l'z’ﬂ +
v2(ve—vi2) viz(viz—v1) viz{viz—v2)
+e-AlIZ (o=t ) kg I
V2 Viviz voviz - vi(vi—vi2)
1 —,x 1 R 1 -
_ ety L ey 1 el
va(vz—¥12) + viz(viz— i) + Viz{viz— vz) J}
g o I R T S (17)
vVi2— Va2 Viz— vz )

We introduce the notation

wilm) = 2 (1—emm;

$2() = 22 (1—evsy;
vz

Vit ve 1 =¥t 1 - vy
= e — V2
b (1) =hiko { e v —vi) + va{v2—vi2) +

! g - }
el
+ [\’12(\'12—\’1) + Vlz(\'m—\‘z)] ’

B2l pmvps AL o=
Viz— Vg Viz— vz

plt)=
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With this notation (17} becomes

P(ty=e-2{l+ ¢ () H{I+41(n) +
+P2(n) +Eiz(n) e~ AP () +12(7) Jo ()

Py =e-A{l+p (t)} {1 +p1(n)}+
Fem AT+ (1)1 M2 (0) + P2 () 1+ @ (M) P2 (0) + Yz (D) ]} (19)

The first term on the right-hand side of (19) defines the probability that
the system has either no faults or a fault of type 1 at the end of the interval
n. The second term is the probability that by the end of the interval n the
system involves either a fault of type 2 or faults of types | and 2. When
the duration of the cycles between the p. m. times is the same, 1.e.,n=1,
formula (19) becomes

P(20) =281+ () P+
Fe A {1+ (D] 1+ (1) [$2 () + 2 (7)] ). (20)

Let us find recursion relations for the reliability of the system at the
end of n working periods (i.e. n—1p.m. periods).

Denote the probability that there are no faults after n—1p.m. periods by
Py({(n—1)7) and the probability that there is a fault of type 2 by P, ((n—1)x.

Then

P(nt)=Po((n—1)t){1 +bi () +P2(x) +Pi2(r) Je—av 4+
+P,((n—1D)1)g(t)eAx,

P(nz) =e-A{Po((n~1)T}1+¥i(x)] +
+Po((n—1)7) [h2(v) +912(0) 14+ Py ((n— 1) @ (7)),

e=8qPy((n—1)7)[$2(7) + Y2 (D} ]+ Pu((n— 1) 1} (x) }=Py(n1); (23)

= @=IAT[L 49y (¥) "~ = Po((n— 1) 7); (24)
b2 (1) +prz(v)]eds =P, (7). (25)

We now consider a more general case; in even-numbered p. m. periods
faults of type 2 are eliminated, and in odd-numbered ones —faults of type 1.
Let us write (16) in a somewhat different form:

P (2t) ={Po(7) + P«(7)} {Po(n) + Py (M) }+{Po(7) + Px(1)} {Px(n) +
+Pey(n)}+ e~ 27 {2 (1) + P12 (T} } P(n/v, ) + P(nfv. xg) {pa (7)) + 12 (D)},

P(nlt, y) =e - (At+van;
P(nft, ) = ANz (n);
Po(v)=e AT, Po(x)=e ATy (z); Pylr) =e ATyy(t);
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Po(th=e M(n): g ga(t) = (e VT —e VT,

Vig—

Since a fault of tvpe 2 is eliminated during the second p. m. period, it
follows that when the latter ends the probability that there are no faults is

Po(20) =e PN b (D HLF e} e TN a1+t le TV, (29)
while the probability that there is a fault of type 1 is

P2ty =e N4 (0 b (T) +
+ 11‘,9(:)}—1-9""“{\]:3(1:) + ¥t iea (T, (30)

For the third working period we have the relation

P(3t) =Po(2v)e “ N {l + 4 (1) +¢2(v) +ua(T) )+

+ P (21){e “MT +qiz(T1)e ~AT (31)
or
Po(31) = Po(20) {1 +¢ (1) Je AT+ P (2r)e ~AHVIT 4
+Po(20){f2(%) + iz (1) Je TN+ P (2r) qua(r)e TAT, (32)
where
S ke . N |
Grz(T) = — (e V1T —e V2T, (33)

Thus the reliability of the system at the end of the n-th working period
(t=n1t)is

a) for odd n:
P(nty=Po((n—1)1){l +¢1 (1)} AT 4e VTP ((n—11)e M7+
+Po((n—1)7) e A {g2 (1) +¥12(x) }+Px ((n=1)w)e "N qra(r): (34)

b) for even n:

P(nx)=Po(in—1)t)e A% {1 +ys(1) +e AP ((n—1)1)e 7% +
+Po((n— 1y t)e "AT{E (7)) + 12 (1) 4 Py ((n— 1)t e "ATqy (1), (35)
Computations using formulas (22), (34), and (35) present no essential

difficulties, since once the initial functions ¥, ¥z, $u2, ¢12 and ¢z have been

computed the solution involves only algebraic operations —-addition and
multiplication.
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V.I. Levin

A METHOD FOR ANALYSIS OF RANDOM
PROCESSES WITH INDEPENDENT
INCREMENTS AND DISCRETE STATES

A method is considered for the analysis of discrete-time random processes with independent stationary
increments, discrete states. Underlying the method is the fact that for fixed parameters of the process
(i.e., the number of positive, negative, and zero changes of state) its probability characteristics may be
computed by geometric methods. The constant parameters are then replaced by random parameters
corresponding to the conditions of the problem, using the total probability formula.

The method 1s applicable to the analysis of "accumulation-elimination” processes, such as failure-
renewal processes in radio-electronic devices.

INTRODUCTION

An important problem in the investigation of random processes is to
compute the probability of some well-defined property of the process in
the time-state coordinate system. The best-known problems of this type
are related to the probability characteristics of the overshoot of the
process beyond a given level and are of great importance in reliability
theory. Overshoot problems have been solved only for certain types of
processes /1,2/. At the same time, there are a great many analogous
complex problems whose solution by probabilistic and analytical methods
involves serious difficulties. An example is the determination of
probability characteristics of the maxima, minima, and monotonicity
intervals of a random process.

The application of geometric methods seems promising for the solution
of these problems. Their applicability depends on the fact that each
realization of a random process conforms to certain geometric laws. An
example of the method for a certain random process with independent
increments was given in /3/.

In the present paper we consider a more general type of discrete-time
processes with independent increments and discrete states; at each stage
the process either remains in its present state M or passes to one of two
neighboring states (N or L). The transition probabilities for M—M, M—N,
M—L are not necessarily equal and are independent of the time and M.

We present a geometric method for studying these processes in time-state
cocrdinates.

1. Formulation of the problem. A process of the type
described above may be represented graphically by a set of realizations
or paths (Figure 1). Each path is a polygonal line whose straight-line
segments are either parallel to the time-axis (present state preserved)




or inclined to it (transition to one of two neighboring states). It will be
clear from the sequel that our mi2thod is also applicable to processes
involving transitions to any finite set of states.
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Since this is a process with independent increments. the state changes
in any time interval A, ={.41— ¢ occur independently of the behavior of the
process in the intervals Aty ... At,o1, A4y ,.... Thefollowing probabilities
are given for each interval. independently of i
N — the probability that the state at the instant { is unchanged at the instant

[N
P — the probability of transition to a "higher' state during A#:
Q — the probability of transition to a "lower' state during Af,.
By definition there are no other transitions, so that

P+Q+N=1. 1)

Every path (Figure 1) is characterized by its initial point and the following

parameters;

a — the number of time intervals in which the transition is to the next-highest
state;

s — the number of time intervals in which the transition is to the next-lowest
state;

¢« — the number of time intervals in which the state does not change.
For the random process under consideration these parameters are
random variables governed by the following probability distribution:

~ ______i'____ STeLA NS v = 2
Fla.b.o)= ——f—r PAQPNe, atbrc=t. (2)

We present a simple method for computing the probabilities of the
positions of the realizations of the process in time-state coordinates. The
basic idea is as follows:

At the first stage the parameters g, b, ¢ of the paths (realizations of the
process) are fixed. It follows from (2) that different paths of the resulting
set are equiprobable. Thus the probability R(z/a. b, ¢) of a path with
parameters a, I ¢ occupving position zis the ratio of the number of such
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paths to the total number of paths with parameters a, 6, c. The former
number may usually be computed by geometric methods. The latter is

t!
Ala, b":)z_a—!_h!—l,‘_!—' a+b+c=t. (3)

At the second stage the parameters a, b, care randomized, in accordance
with the conditions of the problem. The probability of a realization
occupying position z in time ¢ is determined by the total probability formula:

P(zty= D, R(zlab,c)-Flab.c). (4)

atbh+ec=t

2. First stage of the computation. Wenow substantiate and
illustrate the application of geometric methods for computation of the probabil-
ity R(z/a,b,c). In so doing we shall consider points z that are of practical
interest. The methods considered here are analogous to those applied in
/3/ to the investigation of simpler processes.

1. Proposition 1. (Reflection Principle) (Figure 1). The number of
paths AB(ya=0, yp=0) with parameters g, b, ¢ having at least one point on the
time-axis is equal to the number of all paths A;8 with parameters a;=a-+ty,,
by=b—ya, c1=c¢, where A, is the reflection of the point 4 in the time-axis.

Proof. Let ACB be any path with parameters a, 8, cwhich has a point
on the time-axis. Let Cbe the first such point (in direction of increasing
time). With every path ACB we associate, in one-to-one fashion, the path
A\CB, in such a way that the segments CB of both paths coincide while the
sections AC and A,C are symmetric with respect to the time-axis. Thus the
only differences between the parameters of the paths ACB and A,CB derive
from the different parameters of AC and 4,C. The latter satisfy the equations

Qs+ ba,8=a4B+0as;
bap—aap=ya;

. ; 5
Qa,8=bas; (5)
bA,B=aAB,

whence it follows that

aa,B=0aapt+Ya, ba,s=bap—Yya. (6)

It is also obvious that ca,p=cas.

This completes the proof. It is analogous to the proof of the particular
ease c=0in /3/. The difference is due to the fact that when ¢=0 the
parameters of the paths are completely determined by their initial and
terminal points, so that there is no need to discuss the relations between
the parameters of ACBand A,CB.

2. Let us compute the probability that a path OB, B(f, yz==0), with
parameters az=1, b, ¢, neither touches nor cuts the time-axis for 0<x=<t
(Figure 1).

It is clear that any path OBwith no points on the time-axis must pass
through the point E(J], 1)and the total number of these paths is the total
number of paths EB minus the number of paths EB having at least one point




on the time-axis. The parameters of £EBarea,=a—1, by=b.c,=¢;by Proposition
1 the number of paths OB with positive ordinates is

Hu>0a, b, cy=A(a—1,b.c)—Ala, b—1,0). (7)

Substitution of A from (3) and a few simple manipulations give

A(y>0/a.b,c) = % A(a, b, o). (8)

Since all paths with parametersa, b, ¢ are equiprobable, the required
probability is
A(y>0/a, b, c) a—b Un

Ala, 5, 0) S a+b+e . i (9)

Ply>>0/a, b, ¢} =

For ¢=0 this result was proved in /3/.

The principle used in deriving (9) (replacing OB by EB) is naturalily called
the truncation principle.

3. Let us computs the probability that a path OB, B(t,ys), with parameters
a, b, ¢, neither touches nor cuts the line y=—d, d>0(Figure 1).

FIGURE <.

The number A(y> —d/fa, b, ¢) of paths OB having no point on the line y=—d is
equal to the total number of paths OB with parameters a, b, ¢ minus the
number of paths OB having at least one point on the line. By Proposition 1,
the latter is the total number of paths to B from the point symmetric to O
with respect to the line y=-—d, i.e., the point M(0,—2d). The parameters of
these paths are ay=a+4d, bi=b—d, c;=c.

Thus

A(a,b,c)—A(a+d, b—d,c), a—b>—-d

10)
0, a—b<—d. (

A(y> —dla, b, c) ={




Substituting 4 from (3), we obtain, after a few manipulations,

A, b, )| 1-0=dFD by s,
A(y>—dla, b, c) = (@+1) .. (a+d) (11)
y N VICRNR b<d, a—b>—d,
0, a—b=x~d.
Hence the required probability is
(b—-d+1)...8

1 b=d, a—b>—d,

T (a+ D) (a+d)’
1 b<d, a—b>—d, (12)
0, a—b<<—d.

P(y>~dla,b,c)=

4. The probability that a path OB, B(f{, yp), with parameters q, b, ¢ will
have nonegative ordinates for Ossx=<<¢{ may be derived from (12):

b
P(y=0fa. b, c) =P(y>—/a, b,c>={" ari 4Th=0 (13)
0, a—b<0,

A particular case of (13), for a=b, c=0 is derived in /3/.

5. Let us compute the probability that a path OB, B({, ys<<d) with
parameters g, b, ¢ neither touches nor cuts the line y=d.

The number A(y<d/a, b, ¢c) of paths that have no point on the line y=d is
equal to the number of all paths OB with parameters a, b, ¢ minus the
number of paths OB that have at least one point on the line y=d.

By Proposition 1 the latfer is the total number of paths from the point
N (0, 2d), symmetric to O with respect to the line y=d, to the point B.

The parameters of these paths are aj=a—d, 6,=0+d, ¢;=c. Thus

A(y<dla,b,c)=A(a, b, c)—Ala—d, b+d, c), (14)

or, substituting 4 from (3),

_fa—=d+l) ... .a
A(y<da, 6, c) = A(a’b'c)[l 60 . Grd|r = (15)
Ala, b, c), a<d.
Thus the required probability is
_fa—d+l)...a
P(y<dla, b, c)= ! b+1) ... (6+d)’ az==d, (16)
L a<d.

6. The probability that a path 0B, B(f, yp<<0) with parameters a, b, c has
nonpositive ordinates for 0s<x<¢¢{ may be derived from (16); it is

Py<<0la, b,c)=P(y<l/a, b, e)=1—ﬁ. (17)
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7. Let us compute the probability that a path with parameters a, b, ¢ first
reaches the level y=d at its final point R(r=a+b+c¢, d).

Tey this end we shall use the method of "inverted' paths [3,. By
“inversion' we mean the one-to-one correspondence whereby every path OR
whose ordinates {(in order) are y.=0, y,....y,=d corresponds to the path (OR)’
with ordinates

v =te— (18)

It is obvious that the Initial and terminal points and the parameters of both
paths are the same.

To see that this correspondence is indeed one-to-one, note that the twice
inverted path (OR)” coincides with OR, as follows from the equalities

L A A L D (19)

Thus the number of paths OR is equal to the number of paths (OR)’.
Since R is the first point at which the path OR reaches the level y=d, it
follows from (18} that the path (OR) has positive ordinates for O<x=r. Thus
the probability P(d=u.3>>y,). i<r, that the path first reaches y=d at the point R
is equal to the probability that the path (OR)’ has positive ordinates for
N<ver. provided a—bh=d, This probability is given by (9), so that, together
with the obvious case ¢v—b=d

d
P(d={l;>‘l/‘]'—"—r_' U—b=L/‘ (20)
i<<r ] 0. a—b=d.

8. Let us compute the probability that the first point on the time axis at
which a path OS with perameters u, b, ¢ changes direction is its terminal
point S(s=a+b+c. 0)(Figure 2).

If a=b this probability is zero. Consider the case a=6é. It is then
immaterial whether the path is in the positive or the negative domain when
the change of direction occurs: to fix ideas we consider the first case.

The number A(S/a, b, ¢) of paths OS with nonnegative ordinates which first
change direction on the time axis at the point §is the number of paths
OT, T(s—1.,1), with pararaeters a,=a, by=a—1, ¢;=c which neither touch nor
cut the time axis for O0<x<cs—1. The latter number is given by (9). Thus

A(S/a,a,t):s—_ll—A(a,a—l.c). (21)

The required probability is

A(S/a, a, ¢)
Ala. a, ¢) (22)

P(Sla, a, c)=
Substituting the values of 4 obtained from (3) and (21) and adding the case
a=b, we get
_f __ a=b
P(Sla,b,c)=1s(s—1) ' " (23)
0, a=b.




The following conclusion may be drawn from the above examples.
Geometric methods employing the principles of reflection, inversion, and
truncation are fairly effective for the computation of the probabilities of
various positions (in time-state coordinates) of the realizations of a
discrete-time random process with independent increments and discrete
states. Combination of these methods with other methods (especially
inductive methods) yields many useful results. Some details may be found
in /3/, where geometric methods are applied to the investigation of
processes whose realizations have two parameters aand b ¢=0.

3. Second stage of the computation. According to the
formulation of the problem, formula (4) is the basis for the general method
of computing the probability that the realizations of the process occupy
given positions during the time t. Let us solve a specific problem.

Consider a radio-electronic system under the following conditions: at
random instants certain components fail, or standby components replace
faulty one. The probabilities of failure (replacement) of a single component
in unit time are given. The probability that two or more components fail
(are replaced) in unit time is neglected. The failures (replacements) of
components in different time intervals are assumed independent, and
failures and replacements of components are mutually independent. For
normal operation of the system (on the assumption that replacement of a
faulty component is instantaneous) the accumulated difference between the
number of replaced components and the number of faulty components must
be nonnegative, otherwise a critical situation is deemed to have occurred.
We wish to compute the probability that there will be no critical situations
during time ¢.

The state of the system may be characterized by a single parameter y(i)--
the accumulated difference between the number of replaced and faulty
components during the time ¢. It is clear that y(¢) is a discrete-time random
process with independent increments and discrete states. The increment
of y(#) in unit time can only have the values 0,1, —1. Thus the problem
reduces to computing the probability that no realization of the process enters
the negative domain during the time ¢.

The same or a similar formulation is applicable to many problems
arising in various fields of technology and economy and involving the
accumulation and expenditure of resources. For example:

1) reliability computations for discrete automata with memory,
possessing control and error-correction systems;

2) hopper-type devices in assembly-~lines;

3) water-reservoir computations;

4) trade-network computations.

In the last two cases it is assumed that the time and the states (water
level in the reservoir, quantity of sold goods) are discrete.

With a view to including various possible applications in our discussion,
we shall consider the problem of this section as follows: Given a discrete-
time random process with independent increments and discrete states, to
find the probability that the realizations of the process do not enter the
negative ordinate domain during the time {. It is assumed that the state
transitions in the realizations and the corresponding probabilities satisfy the
conditions of the formulation of the problem, and that the initial state of the
process is the origin.




By {4) the required probability is

Pu=0,H= D, P(y=0/a b, c)Flab.c).

drbec=t

(24)
Substituting the corresponding probabilities from (2), (13) into (24), we get

P(y=0,¢) =

b
- Z a'b' PQbNC(+l)- (25)
a+bremt
a-b6>0

Expressing ¢ in terms of a, b, f and setting a+b=%, the two sums in (25)
may be written as follows:

¢ (0.5 &)
2 C ANt -* Z Cyb Pr-b Qb.
k=0 b=0 (26)

¢ (0.5 ]
2 C/ANt-# Z Cub~! Pr-5 Qb,

k=G b=

Thus the probability of a nonnegative state of the process during time ¢ is

{0.5 &}

P(y:20,1)= Z CANI=* D) (Cab—Cyb=1) PE= Qb. (27)

k=0 b=0

For at all significant values of ¢ this formula involves a formidable number
of computations. Fortunately, in practice the most interesting cases are
usually those in which at least one of the probabilities P, Q, N is negligibly
small. Let us consider these cases.

a) Q<P.

In this case the inner sum in (27) may be replaced by its first term
(b=0). The result is

t
P(u=0,f) & D) Ct Nt P= (N+P)t=(1-Q)*. (28)

k=0

This formula has a simple physical interpretation. For instance, in the
case of a radio-electronic system (see above) it means that if failures are
relatively rarer than replacements by standby components, then the
absence of critical situations and the absence of failures are equivalent
events.

b) Q=P.

In this case the inner sum in (27) is equal to P* C,0%, and thus

P(y=0,¢) = Z C, 034 Cpk Nt-k P,

k=0




1t is considerably easier to compute the sum in (29) than the double sum
in the general formula (27). In practice the most interesting case is Q=P=0
(""slowly changing' process). Computation can then be limited to the first »
terms of (29). The absolute error involved in this approximation for large
t is at most

ot+1 pn+t
Bmax= ZE (30)

The actual value of the absolute error is usually much smaller. For
example, let P=10-5 {=100, and suppose the sum is limited to 11 terms. By
(30) the error is at most 0. 01. However, even if we compute the first term
alone we get

P(y=0,100)>N'®= (1-2. 10-5)19>1—-2.10"2,

so that the absolute error A is at most 0. 002.

Note that when (P <& | computations of formula (29) can always be limited
to the first term. The physical meaning of this assertion is simple:
if the input and output of even one unit of the resources is an almost
impossible event, then the nonnegativity of the resources during time ¢ is
equivalent to the latter maintaining their initial (zero) level.

c) Q=>P,

In this case it is sufficient to compute the [0.54]-th term of the inner
sum in (29). The result is

¢
P(y=0,1) = Z CF(Cyl05k —C, 105k —1) Nt~k Pk—[0541QIO5 8] (31}
k=0
The case Q=0 is of practical interest. Moreover, if { @<l the

computation can be limited to the first term of (31). In general, if the first
nterms of (31) are taken into account, the absolute error cannot exceed

N

w(gm) n+l

Amax=

a/iQ

Thus, if ¢= 100, P= 1075 Q= 1072 and the 9 first terms of (31) are
computed, then the absolute error cannot exceed 1.4.1074,
This degree of accuracy is quite reasonable. In fact, the right-hand side
of (31) is greater than

(32)

N109—= (1 —10-2—10-5)1092 0.04,

so that the relative computation error is at most

_14-10-4 .
b= —gpr— =35-10"%;

d) N=0 ("rapidly changing'' process).




In this case only the f-th term of the outer sum in (27) is not zeru. Thus

105 & (33)
P(y=0.1)= Z (Ch =7 HQH1—~Q)t-*

b=
or, after simple maninulations, for Q«<l

[ |

(1—=20Q) e .
PQ'?O.N:"TW-Z (,AQQ[_Q)! +
G (1 QY (34)

Computation of (34) is a simple, since tables are available for the sum in
the right-hand side /4 . A particular case of this formula, for P=¢ - 0.5.
may be found in ;3.

CONCLUSIONS

1. We have proposead a method for the analysis of discrete-time random
processes with independent increments and discrete states, based on simple
geometric principles 3, .

2. The method is also applicable to continuous processes. In this case
formula (2) must be replaced by the probability density of the number of
positive and negative increments of the realizations of the process as
functions of a continuons time-variable,

3. The only processes actually studied in the paper were such that each
step involved an increment of at most one unit. It is easy to generalize
the results to the case when the state changes are numbers from the
interval [-K, +L], where K and L are positive integers,

4. The method is applicable to the analysis of systems whose operation
involves the input and output of resources, such as radio-electronic
systems with failure and renewal.
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A. M. Margulis

STANDBY REDUNDANCY SYSTEM AS A PARTICULAR
CASE OF SYSTEMS WITH POSSIBLE STRUCTURAL
FAULTS

Formulas for the reliability of standby redundancy systems are denved from the corresponding formulas
for systems with possible structural faults, assurmng the conditional failure intensities of the system in the
presence of working components to be zero. When all the components have failed the conditional failure
intensity of the system is assumed infinite.

In /1/ A.N. Sklyarevich determined the probability of failproof
performance for time ¢ of a nonrenewable system with n possible
structural faults. Failures of components are considered independent.

If the probability of failproof performance of a component for time ¢ and 4
the conditional probability of failproof performance of the system with &
structural faults (k=scn) are described by exponential laws, then the
probability of failproof performance of the system is given by the following
formula:

‘ (LA S e ,
G(f):f'(f) 1+ Z 2 2 o Z Z—me-a' ’ (1)

ket fi=1 =l =1 =0

where N is the number of components in the system,

Q(z iy iz ..., iy =(—1)k2(2—vy ) (2—Vi,5) ... (Z—Vi . . .i ) (2)

L4
Vit ip =M. ip— b —hia— o~ hips (3)

and %, Awn,..., Ay, are the failure intensities of the components of the system,
Wivin .. .. i, 1s the conditional failure intensity of the system in the presence of
a combination of failures i, is, ..., iy, and finally

N

-~ ¥ At

F(ty=e =

We shall show that standby redundancy systems are special cases of
systems with possible structural faults.

A common feature of both types of system is that they can perform
satisfactorily despite several faulty components. The specific features of
standby redundancy systems are:

a) the failure intensities of the components are equal:

7\.,', =7~,‘, = ... =7~i~ =}.; (4)




v} the conditional failure intensity of the svstem when less than V
components fail is zero:

Wity o6, = (s)

while 1t is infinite when all components fail:

In view of (1) —(8) formula (1) assumes a simpler form:

N-1 &

AR
o Nat & p e e-E o
G(ty=e-vitl 14 ZI Ct il :-zo: (T A

N—1
o=l g DT (— 1)k Cyh(1- e )k

g=1

Opening the braces and changing signs within the parentheses, we get

N-1
Gl£) me=¥a g ) Cykem (F=BM (] —e=30)*, (8)
=1

&

Formula (8) is identical with the formula for the probability of failproof
performance of a standby redundance system, derived by different
arguments in ;2, 4/ and other sources.

The methods considered in /1/ for evaluating the reliability of systems
with possible structural faults are also applicable when each component is
subject to two types of failure — "short circuits' and "open circuits. "

Consider a system of V components, each of which is liable to failures
of either open-circuit or short-circuit type, these failuresbeing independent.
The system can be reoresented by a system containing 2.V components,
consisting of two V-component subsystems. The components of the first
subsystem are liable only to short circuit failures, those of the second to
open circuit failures. The system is considered to be performing
satisfactorily if both subsystems are performing satisfactorily. Then the
probability of failproof operation of the system is

G(t)=Go(t) Gs(), (9)

where G:(t) is the corresponding probability for the first subsystem (short
circuits) and G«#) for -he second (open circuits).

In evaluating the reliability of a system with regard to specific types of
failures the schematic diagram describing the connections between the
components plays an essential role. Let us consider this problem for the




case of series-parallel systems. The reasoning for other types (such as
bridge circuits) is analogous. The only modification is in the combinations
of failures causing failure of the system as a whole.

[Let us determine these combinations for a series-parallel system. A
failure of the first subsystem occurs if all the components of a single line
are short-circuited.

Assuming that the conditional failure intensity of the system for all
combinations of faults that cause failure of the entire system is infinite, we
obtain

Bigrriszs - ordgraccrrign™ (10)
where iy indicates the failure of the r-th component from the left in the s-th
line, and n is the number of components connected in series in a single line.

it also follows from (10) that the first subsystem breaks down if the
number of faults occurring in it exceeds N—n.

The probability of failproof performance of the first subsystem during

time {is

~n

N
GOy =F {1+ 2} D)

k=1 n=tn=l ég=iy=1

Z Z_ﬁﬁ;_z__e“a“ ' (1)

ip=igp=1 (=0 (Bu b1, ..y in)

where k=n(s—1)+r, & is the failure intensity of the i-th component (short
circuit), and
N
- X kg
F(t)=e =}

A failure occurs in the second subsystem if all the lines are open-
circuited. Therefore

Wi s i = (b Lo r=1,2,..., ). (12)

s Tar

The second subsystem breaks down if the number of faulty components
exceeds N—m, where m is the number of lines connected in parallel.

The probability of failproof performance of the second subsystem during
time {is

N N

Golt) = Fo () 1+Z >3

iyl =il

ig=ig, =1 (=0 Q (ﬁlv ‘l. B

where k=n{s—1)+r,




%, i3 the open-circuit failure intensity of the i-th component, and e ™t is the
probability that the i-th component is not open-circuited during time f.

Substituting (11) and (13) in (9), we obtain a formula for the probability
of failproot performance of the entire system during time ¢:

N-n N N

C’(t)=Fo(f)Fs(f){ EIDIPIN

N r N
S N e
: Z < Q (B irs .. -5 )

t~=l =0

N k o
Z Z ___'Le”ﬁz' . (14)
TSt e Q' (B irs. .., ix)

Formula (14) may be written as follows:

N-tmen) 2N 2N

EEDIID I

=1 =1

Z}EJ—————_ijﬂf} """ (15)

Gty =F(?)

TS QOBein i

where F(t)=Fu({)F:(¢) anl the conditional failure intensities of the system for
all combinations of faults that imply the combinations involved in (10) and
(12) are infinite.

In /3, 4.5/ and in other sources a formula is derived for the probability
of failproof performance of a series-parallel standby redundancy system
during time ¢. in the presence of two types of component failure (open
and closed circuits). Separate expressions are given there for the two
types of failure. It may then be shown by manipulations of the expressions
(11) and (13), rather than (15) itself. that when condition (1) holds the
formula (15) and the formula for the probability of failproof performance
of a standby redundancy system are identical.

Assuming the failure intensities of the components equal, let us find the
probability that the first subsystem fails when failures occur in less than
N—ncomponents (i.e., in the presence of the combinations involved in
condition (10):

C,,.'e‘““”””‘"(l __e—;,st) +CiCy_ e —(N—n—1)A s (1 _e~}-¢)n+l+ .
A+ (C!CRronm Cm?)e ~W MM s (1M ymnp | 4
FCAICVS " = C2C "+ . +
F (= DO Clyimeyale M (1 —e M)V =
ST S (1)1 Gt e (1 ey e
k=n i=l

where k=sn+r; s=0, ,(m=1); (r<n).

171




In view of (15) and (4), formula (11) may be written as follows:

n -l
Gs(t):gﬁv;,r + Z Cpre Wlihdey g A,,)”+
k=t
N—n s

+ 2] 2t (= DA CuiC ) e =1 — o i) v, (16)

k=n i=l

Simple manipulations yield
Go(t) =[1—(1—e *)r}m . (17)

Similarly, using (4) and (12) we can derive from (13) an expression for
the probability that the system is not open-circuited during the time ¢:

Golt) =1 — (1 —e ~"Aym (18)

Formulas (16) and {(17) coincide with the corresponding formulas in the
above-mentioned sources.

Example. Letus derive a formula for the probability of failproof
performance of a system consisting of two lines connected in parallel, each
line consisting of two components connected in series.

1) The probability that no failure occurs owing to short-circuiting during
time ¢ is:

Go(ty=e M [1=C1—eM )]+ (CE~CJ) (1-eM )=
=e M 1—2(1—eM)]=[1—(1—e M)

2) The probability that no failure occurs owing to open- circuiting during

time ¢ is

Go(t) =e M [1—Cy) (1—eM )+ (C2-Cpt Cy) (1 —eM )=
=0e~ M o ] ( _e—-z}\a‘)g

3) The probability of failproof performance of the system during time ¢ is
Gty =M= (1—e )P [1— (1-e~)2).
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APPLICATIONS OF STRUCTURAL REDUNDANCY
TO INCREASE THE RELIABILITY OF ANALOGUE-
DIGITAL FUNCTIONAL CONVERTERS

A methad 1 proposed far the construction of analogue~diatal time-pulse tuncnon converters of hish
reliability, based on the spphication of structural methods for the sntroduction of redundancy,

t. INTRODUCTION

To improve the reliability of digital computers (DC) with components of
limited reliability one must introduce redundancy. In this connection much
attention is being focused on structural methods for the introduction of
redundancy in DC, are based on the application of correcting codes and
various types of redundancy /2,3, 4,6, 7,. At present these methods are
inadequately employed in increasing the reliability of the input units of DC
being used as analogue-digital converters (ADC).

The majority of current designs for ADC consist of both analogue
devices (linearly-varying voltage generators, comparison circuits, etc.) and
digital devices (registers, counters, switches, commutators).

The operation of ADC involves errors of three types:

1) Errors governed by gradual deviation of the working parameters of
the device beyond the limits laid down by the designer (drift failures). In
ADC this type of error is characteristic primarily for the analogue devices,
whose input parametar is a continuous quantity. The admissible deviations
of this quantity are quite limited, since they determine the accuracy of
analogue-digital conversion. For the digital devices, the range of
admissible variations in the working parameters is wider, and they are
therefore less susceptive to errors of this type.

2} Catastrophic failures, usually due to faults in the components (open or
short circuits).

3) Short-duration (or self-eliminating) failures, due to disturbances by
external and internal interference.

The two last types of errors may occur in both analogue and digital units
of the ADC. In the sequel, reference to an error of an ADC unit will mean
any of these three types.

Modern methods for increasing the incerference-stability of digital
devices use error-correcting codes (arithmetic AV-codes for errors in the
adders of a DC; nonarithmetic codes (such as Hamming codes for errors in
information-transmission and information-processing networks). Since
these codes employ cigital representation of information, they are not
applicable to detection and correction of errors in analogue devices.
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FIGURE 1. Block-diagram of a multichannel ADC.

Various forms of redundancy have gained widespread acceptance as a
means for increasing the reliability of computing equipment. The smaller
the degree of redundance, the greater the reliability of the DC. With regard
to ADC this means that it is more advantageous to introduce redundancy at
the component level than to reproduce the entire converter.

To illustrate the possibilities of constructing analogue-digital converters
which correct errors arising during operation, we consgider a multichannel
sequential-count ADC with intermediate conversion into a time interval /1/
(Figure 1).

The operation of the converter proceeds as follows. Voltages Ugy-Uxfrom
the sensors of measured quantities D;—D are applied to fantastrons FN,—FN;.
A pulse "start measurement'' sets the triggers of the counter to zero and,
through a delay line (DL), starts the fantastrons. The duration of the output
pulse of each fantastron FN; is proportional to the corresponding Ux. At the
same time the gates B,—B; are opened and they receive pulses from a
generator (PG). The commutator-distributor opens the outputs of the gates
in sequence, for periods equal to the maximum duration of conversion in a
single measurement channel, and the counter receives the PG pulses from




the i-th channel. The reading of the counter is proportional to the input
voltage Uy, On completion of a conversion cycle in the (-th channel. the
commutator-distributor produces a code-transmission pulse CTP which
opens the gates By —By.  Through these gates the state of the counter is
transntitted to a channel linking it to the DC.

2, INCREASING THE RELIABILITY OF THE
ANALOGUE UNITS OF THE ADC BY ERROR
CORRECTING METHODS

Redundancy can be introduced in analogue devices by triplication and the
use of a selective circuit (majority element). When an error occurs in
[only] one of the three redundant devices, an error-free signal is produced
at the output of the majority element. If we regard the output analogue-
variables as the elements of a code, then three-fold redundancy with a
majority element is eguivalent to a (3, 1) code for correction of single
errors. In terms of Boolean algebra, the output function M(x, y. z) of the
majority element has the form

M{x,y,2) = (xAy)V(x\2)V(yAz), (1)
where x, y, z are binary input signals.
Expression (1) is valid for bistable digital devices. The operation of a
majority element with analogue inputs may be described in terms of

continuous logic /5/. The logical OR function \/ is the selection of the great
greater of two continuous variables v and y:

x\/ y=max(x, ).
The logical AND function A is the selection of the smaller of xand y:
x Ay=min(x. y).
Expression (1) now becomes
M(x, ¢, 2) =max [min(x, y), min(x, z), min(y, 2)1

If x=y=2, then

M(x, y, 2) =max [x, min(x, z), min(y=x, 2)|=x=y. (3)

Expression (3) corresponds to the selection of two identical quantities out
of three.

Simulation of the operations min and max by electrical circuits is
described in /5/. The block-diagram of a majority element with three
analogue function units is illustrated in Figure 2a. The signal at the output
of the circuit is that described (2) (Figure 2b).




In the converter circuit under consideration, the fantastron plays the role
of a generator of rectangular pulses of variable duration. The basic
parameter of this component is the relative time-error factor /1/; deviation
of this parameter beyond the admissible limits gives rise to an error. By
three-fold redundancy of the fantastron with a majority element single-error
correction can be achieved. The input variables of the selective circuit are
the durations of the fantastron pulses. A single error occurs when the
durations of two pulses coincide and the time error in the third exceeds the
admissible limits. The output function of the majority element is

Tout =max [min(ty, 2}, min{t;, Ts), min(xs, 3)], (4)

where 1), 12, 13 are the durations of the output pulses of the fantastron and-r

out
is the duration of the output pulse of the majority element.

majority
element

FIGURE 2. Block-diagram (a) and majority selection of a continuous
signal from three input signals (b).

To construct a majority element which selects the maximal and minimal
pulse durations, one can use binary-logic AND and OR circuits. The pulse
duration at the output of the AND circuit is determined by the time during
which the input signals coincide. The duration of the output pulse of the OR
circuit corresponds to the greatest input-pulse duration. The use of binary
AND and OR circuits may increase the error of the fantastron converter,
owing to variations in the duration of the rectangular pulse at the output of
the majority element. Below we describe a method for correction of
instrumental errors in the ADC.




A redundant circuit of fantastrons with a majority element and a time
diagram describing its operation are illustrated in Figures 3, a, b.

The increase in the reliability of the fantastron when this method is used
1s limited by the reliakility of the selective element itself. Some increase
in the reliability of the majority element in comparison with that of the
fantastrons may be achieved by series-parallel redundancy of the digital
circuits, In the selective circuit one can use gate circuits, as suggested in
, 7,. A signal is applied to the gate inputs only in the presence of a control
voltage (as in electromagnetic relays). The methods for improving the
reliability of gates are analogous to those used for switching devices , 4, .
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FIGURE 3. Schematic diagram of a three-fold-redundant fantastron circuit with majority
vlementta) time diagram (br
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FIGURE 4, sSchematic diagram of majoritv element constructed
from gates.




The gates in the majority element are connected as indicated in Figure 4.
The output pulse of the gate circuit is determined by the duration of the
pulse at the control and gate inputs. The fantastron pulses are applied to
the control inputs of the gates B, —B,;. The power supply feeds into the gate
inputs B, and B,. The durations of the pulses at the inputs of B, and B, are
tnand 112, respectively. From the output of B, the pulse proceeds to the
gate inputs B, and B, while that from B, proceeds to the gate input Bs;. The
outputs of B,, B;, B; produce pulses of durations min (tr1, vr2), min (t¢1, 7¢3),
min ( T,2.%i3 ), respectively.

3. INCREASING THE RELIABILITY OF THE PULSE
COUNTERS AND DISTRIBUTORS OF THE ADC

The function of the pulse counter in the ADC is to convert the measured
analogue quantity into a digital sample and to act as output register for
transmission of the digital code to the DC. The errors in the ADC depend
to a significant degree on the fact that the binary counter is a source of
random errors. A single error may give rise to errors in several digits of
the digital code of the measured quantity. It is thus necessary to correct
errors in the binary counter. However, the existing methods for
constructing error-correcting counters, based on the use of error-
correcting codes, considerably complicate the structure of the counter and
increase its cost /6, 7/.

The code states of a counter are usually represented by binary or decimal
residue-class arithmetic /8/. The counter consists of several ring shift-
registers (ring counters) which successively move a '"one' (or a "'zero'')
from bit to bit. The bits of a ring counter are memory cells which are
energized by a "one' signal during a single bit-time. The bit-times of all
the ring counters are synchronized by a clock. The number of states of
a ring counter is determined by the number n; of bits it contains.

Calculating circuits employing ring counters have a number of
advantages:

1. Ring counters are easily constructed from ferrite elements, which
are more reliable than transistor elements.

2. The reliability of ring shift~registers may be considerably improved
by employing redundancy with cross-connections of ferrite-diode cells, as
suggested, e.g., by L. G. Ivanova /10/. A register of this type performs
reliably when there are ""open-circuit' -type failures in any combination of
up to half the ferrites, barring errors in two ferrites of a single bit.
Connection of the diodes in series can lessen the danger of "short-circuit'-
type failures. The gain ir reliability is achieved by relatively simple
means, while the increase in the size and weight of the circuit is fairly
small.

3. The load on a ring shift-register is constant, since the memory cells
of the counter always contain the code ''one. '

It is thus advantageous to use ring shift-registers of ferrite-diode cells
in ADC as highly reliable pulse counters and pulse distributors.

The structure of a system of ring counters is based on the following
conditions /8/:




1) The numbers of bits in the ring counters must be pairwise prime:
(nony=1, i=j; {5}

2} the total number V of states of the system is defined by

N=[1 n. (6)

where m is the number of ring counters;
3) given the capacity N of the system, one must find the minimal sum
of pairwise prime numbers S, , whose product is at least .V:

m

[1r=N X n=Sws (7)
e=1

i=1

(n.on)=1 Isism Isj=sm; (=]

Spin is the minimal nuimber of bits of the ring counters yielding the given
capacity.

As an example, suppose the greatest number of pulses entering the
counter of the ADC is 62 = 2% -1. corresponding to maximum converted
continuous voltage. Using tables of prime decompositions of the numbers
from 63 to 127 into pairwise prime factors one finds that S, =14 for two
numbers Nyand M (Ni=70=2X5X7, N;=81=3X4X7). Choose a system of ring

counters with o= 3. no =4, n;="7. The sequence of states of this system
is given in Table 1, and Figure 5 is a block-diagram of the corresponding
circuit.
TAFLE t.
counter states
bit-time
m ny 3
1 100 Oitl 1000000
2 010 1011 0100000
3 001 1101 0010000
1 100 1110 0001000
5 010 Ol 0000100
6 00t 101 0000010
63 0091’ 1o 0000001
84 001 1110 0000001

Any bit-time number smaller than 84 corresponds to a definite state of
the ring counters.

To express the readings of the ring counfers in a binary representation
system their states may be decoded by a read-only memory unit (ROM).
When this is done the ring registers fulfill the function of a pulse
distributor controlling the sequential read-out of the numbers recorded in
the ROMI in binary representation, which correspond to the states of the
ring-counter system. Existing ROMs are simple in design and construction,
small in size, and highly reliable /9/. Today ROMs are made from various
ferromagnetic elements, diode and capacity matrices, and perforated ferrite
plates,
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Another important advantage of ROMs for ADC circuits is the possibility
of representing the binary numbers recorded in the memory unit in noise-
stable code.

The numbers recorded in a binary representation system have 4
information digits and m parity-check digits, corresponding to the
representation of the measured analogue quantity in error-correcting code,
say Hamming code. This renders transmission of discrete information from
the ADC to the DC more reliable.

FIGURE 5, Block-diagram of a system of three ring counters.

For instance, with the system of ring counters of Figure 5 one can
obtain 6-digit binary code at the output of the ADC. Thus representation
of the numbers recorded in the ROM requires 2= 6 information digits and
m= 4 parity-check digits. The total capacity of the ROM is

m+k=4+4+6=10,

Yet another advantage of ROMs is their low energy consumption, since the
information is read out at the instant the conversion cycle ends.

Figure 6 is the block-diagram of a single-channel ADC with two ring
counters of capacities n; and n2 and an ROM storing (m+k)-digit codes. A
""package' of clock pulses, whose number is determined by the duration of
the pulses of the fantastron FN, reaches the ring counters, which fulfill
the function of a pulse distributor controlling the sequential read-out of
information from the ROM. At the end of the measurement a 'transfer
code' pulse (TCP) is fed to the ROM. The number selected by the ring
counters proceeds to the output register. Let us consider the operation of
a pulse distributor consisting of ring counters with n;=3 and n,=~ 4 bits
(Figure 7). Suppose the state of the three-bit counter is 100, while that of
the four-bit counter is 0111. The clock pulses, entering through the gate B,
move the information through the ring counters. The energized bits of the
counters (state ''one'') send a pulse to the inputs of the corresponding gates
B, — B,. The other input of each gate receives a set pulse. When the pulses




at each input of the gate coincide, the output produces a current pulse. The
outputs of B, — B, form a coordinate-transformer matrix of dimension 3 X 4.
Each coordinate-transformer acts as a switch operating on the principle of
anticoinciding currents; it is a pulse transformer with four windings on a
toroidal core with rectangular hysteresis loop. The matrix cores are at
first negatively magnetized (state ''zero''). This is ensured by a bias
current /n passing through the bias windings of the coordinate transformer.
At the end of the measurement cycle the pulse TCP starts the set-pulse
shapers PS-1 and PS-2. A negative current pulse —/¢ proceeds from the
output of PS-1 to the gates B, — B,, and passes through all gates
corresponding to state ''one'' in the bits of the counter n..

The gates B, B,, B; receive a positive current pulse +/. from the output
of PS-2. As a result, the core of the magnetic switch at the intersection of
a nonenergized row and an energized column is magnetized, enters state
“one!' and sends a pulse to the output winding of a magnetic switch loaded
with a number bus consisting of 10 cores with rectangular hysteresis loop.
The current pulses which reach the output windings of the bit cores of the
number line proceed through amplifiers A, — A, to the output register.

4]

H
2
3

5 contral . ROM
start network :
fantastron 7y Ny

UX T T T T
bit-sense

winding outputs

TP al?a‘ ll lmm)p
1 1]

output register

£ information M- parity-
btts check bits

FIGURE 6. Block~diagram of ADC with ROM.

Today several versions of small-size and compact ROMs are available
in which the number of memory cores in the number buses is considerably
smaller than the total czpacity of the ROM in binary units /9/. This is
achieved by threading several numerical set-windings on each core. The
information in these RO\Is is determined by mechanical considerations — the
threading of the cores.

In the ROMI circuit of Figure 7 there is a single number line on which are
threaded 12 set windings from the corresponding coordinate transformers of
the pulse distributor.
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FIGURE 7. schematic diagram of ROM of capacity 3 x4,

The above mode of operation of a pulse distributor with two ring ccunters
can be extended to systems of several ring counters, using well-known
methods /9/ for the construction of multicoordinate networks of ferrite
cores. Design of multicoordinate ROMs is also not difficult.

By employing redundancy with cross-connections of ring counters, one
can ensure normal performance of the pulse distributor despite catastrophic
failures. Random errors are not corrected. In this connection we mention
the design of error-correcting pulse distributors from linear transformer
decoders, based on the principle of addition of voltages /3/. The
performance index of a transformer decoder is its resolution factor C,
defined as the ratio of the voltage in a selected bus of the decoder to the
maximal voltage in the other buses:

n
C= 0% (8)

where n is the number of binary-code digits in the register at the decoder
input, and dis the code distance between the input binary numbers of the
decoder.

The operation of a linear transformer decoder Is controlled by a shift-
register in which the information is represented by noise-resistant code.
The circuit corrects errors arising both in the register itself and in the
decoder. At present the disadvantage of such circuits is the need for
threshold elements at the decoder input in order to select the output
signals in the selected and nonselected buses.

Utilization of codes with code distance d=—g—, developed with the aid of

orthogonal matrices /2/, provides complete suppression of noise in the non-
selected buses. However, application of this method in an ADC increases
the size of the equipment.




4, FUNCTION CONVERSION IN THE ADC

For function conversion of an analogue quantity into digital code. ROMs
can be used. The numerical cells contain information in error-correcting
cade. in accordance with the given function-conversion operator. In
recording in the ROM, various instrumental faults of the ADC may be taken
into account: the nonlinearity of the response of the sensors for the
measured guantities, “he nonlinear dependence of the duration of the
fantastron pulse on the control voltage, the variations of pulse duration in
the majority element. This is especially important when a multichannel
ADC has a set of identical sensors, such as temperature sensors in an
industrial remote-conirol system.

Suppose that the teruperature sensors are thermoelectric pyrometers
~11,. The dependence of the emf induced in the thermocouples on the

temperature ' is described by a
nontinear function (the curve e=/ (%)
b A thnary in Figure 8). The reading of the
not,) thermoelectric pyrometer is to be
i converted into digital code with an
%z accuracy of 1,15. The nonlinear
1100 function ¢=/(0")is approximated by a
/;270 straight line e=/,(0"), with a certain
| 1001 error. Table 2 gives numerical
g\ L 1000 standards for the temperature when
> \Q"\ g% the response of the thermocouples is
of approximated by a linear function and

onor
om0 for the true response. The numerical

\

o011 qualities are represented in Hamming

0010

2001 (7, 4) code.

0 ———————— In a similar way the nonlinearity
50 100 150 200 250 300 ¢ 405 of the fantastrons in an ADC can be
corrected.
PICURF ¥, Statie response of a thermoelectsic If the converter output is to
Pesele, produce both the current value of the
measured quantity and a given function
thereof, the capacity of the ROM must
be enlarged. The memory cell can therefore store the binary code of both
the function itself and its increment in each working cycle of the ADC. The
numerical values of the increments proceed from the ROM to a counter-
tvpe adder, where they are added or subtracted, according to the sign of the
increment. The number of bits in the adder may be greater than that of the
ADC itself. For example, when the measured quantity is squared,
increments enter the adder in accordance with the expression

14+3+547+ ... +27—1,

where n is the capacity of the ADC.

Here we are using the fact that the sum of the first m odd numbers is m*.
The counter-type adder contains 2nbits.

To increase the reliability of the counter-type adder one can use error-
correcting codes, sucth as AN-codes.




TABLE 2,

Digital standards
e=fi(0°)
information |parity -check
symbols symbols

9

000}
0010
0011
Q011
0100
0101
0110
(38
1000
1001
1010
1011
1100
1101
1

CONCLUSION

The above methods for increasing the reliability of multichannel ADC of
time-pulse type may also be used for other types of analogue-digital
converters, introducing redundancy in the individual units of the ADC.
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L.P, Leont’ev, B.M. Kopelevich

THEORETICAL GAIN IN RELIABILITY BY
MFEANS OF SERIES-PARALLEL AND PARALLEL-
SERIES STANDBY REDUNDANCY

Equations are considered for determining the reliability of series-parallel and parallel-series redundant
systems with constantly connected standby components. Failure of each component may be due to either
of two independent reasons. It is shown that these schemes may be used to obtain reliability arbitrarily
close to unity.

In /1, 2,3/ methods were considered for determining the reliability of
series, parallel, and combined standby redundancy systems. Criteria
were developed for selecting the method whereby the main and standby
components are connected, and various properties of the reliability function
of standby redundancy systems were studied.

In this paper we study the question whether one can achieve a given
reliability, arbitrarily close to unity, by means of series-parallel and
parallel-series standby redundancy.

In /3/ it was shown if open and short circuits are mutually incompatible
events, then the reliability of systems in which the standby components are
connected in series-parallel and parallel-series is given by the equations

Pn,m=(1—gM)m— (1—po)™; (1)
Pr o= (1= "= 1(=ps)", (2)

where po is the reliability of each component as regards open circuits,

go=1—po,
and ps its reliability as regards short circuits.
gs=1—ps;

m is the number of elements in a line or the number of elements connected
in parallel in a single branch (Figure 1, 2), and n the number of parallel
lines or the number of branches connected in series (Figure 1, 2).

Since the inequalities

Go<Ps and ¢s<po (3)

are always true, it follows that equations (1) and (2) may be combined in a
single equivalent equation:

Pa = (1—29)7— (1—=B*)",
O<a<l; 0<B<]; a<<f.
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FIGUKE L. Parallel-series connecrion of clements

FIGURE 2. Series-parallel connection of elements.

We wish to prove that Jor any « and g satisfying conditions (5) and any &>k
(I=xksx), there exists rn>r (1=<<rs%) such that

Pk,, r,>Pk, T (6)
in explicit form, inequality (6) is
(1—aity)res— (1—phro)rexs (1—ak) — (1—pF)r. (7)
Since no restrictions are imposed on k other than Is<k#x, we must prove
the following assertion:
I. For any Issksoo, l<<r#>, and ki=k+y(y>0), there exists 0<x such that
inequality (7) holds.
In equality (7) may be written in the form

(1 —at+o)r+x— (1 —gk)r> (1 —Be+v)r+x— (1 —BA)r. (8)

Both sides of {8) may be regarded as values of a function of a single
argument z, with z=a in the left-hand side and z =8 in the right-hand side.
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The conditions 0<z<1, zy=a<z;=§ must be satisfied. Inequality (8) becomes

¢ (21)>0(22), (9)

@(2) = (} —2key)r+r— (1 —2k)r, (10)
Thus Proposition I reduces to the following assertion:
II. For any z<2,(0<z,<1),(0<z<)and any k =k+y(0<kzxo,0<yz=x), there
exists x(0<x= ) such that ineguality (8) holds.

To prove II, we must show that the conditions imposed on the values of
x, y, k,r ensure that

(11)

% = — (D) (ot y) 24yt (1 —2E+W)r+x=1 4 fprak=1 (] — 2&)7=1, (12)

Substituting %”—from (12) into (11), we get the inequality

(r+x) (k+y)2k+y-l (l _zk+y)r+x—l> krzk-l (1 _zk)r—-l'

Inequality (13) may be replaced by the stronger inequality
(r+x) (k+y)z¢(1 —2%t9) s> kr,
For if (14) holds, then since
(1—zF+0) > (1 —2%) (15)
in the domain y>0 under consideration, it follows that (13) is true.
Consider the left-hand side of (14). The product of the first two factors

is always greater than kr:

(r+x) (k+y) >kr, (186)
while the product of the remaining two factors z¢(l1—2z¢+¥)* is always smaller
than unity for x, y>0.

Inequality (14) will be satisfied if we can find conditions under which

(1 —zt+9)= (17)

is a nondecreasing function of x and y.

Consider the partial derivative 9%(_’5'__@, where $(x, y) = 24 (1 —2h+v)x,
Y

%;y)_ =2 (1 —2k+¥) %I 2— 2Yx (1 — Z6+¥) *- 1zk+0]n 2. (18)




Inequality (14) will be satisfied if we can find conditions guaranteeing that
the partial derivative

g (x, ) a
R s {(19)

1s positive. The condition 2—'g;""—y)>0 is equivalent to
(1 —25ru) x> (1 —zhty)x-)zk+y, (20)
Hence

3
X< g — L (21)

It is clear from (21) that for any x>0 there exist infinitely many values
of y satisfying {(21), hence also (14).

We have thus proved that there are conditions under which the functions
defined by equations (1 and (2)are monotonically increasing functions of m and
n. This means that once the arguments m and n have been suitably chosen
it is always possible to increase the reliability. We claim that the
reliability may be made arbitrarily close to unity.

Consider the limit of the expression

VY gk

(x—ak)r=[(1—ak)7 : (22)

The expression in square brackets tends to e-'as k—+~. Therefore *

. Ry — ~lim ra®
Jim(l—af)=e ke . (23)

7o

The following conditions are necessary for the expression (4) to tend to
unity as r—> and k-oo;

lim(l —~at)r=1;

rosow
oo
lim (1 —p*)r =0,
e (24)
But the limit (23) is unity if
lim r a#=0. (25)
[nés

* [ Translator's note: This argurrent is far from rigorous. but the final conclusion is nonetheless correct. !
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The relation (25) will be satisfied if r—~ to the same order
where ¢ is an arbitrarily small positive number.
On the other hand,

lim (1 — p#)r=0,
g

if rp* also tends to = as r—x and k-»~. This is the case if r—+= to the same

order as where g2 is another arbitrarily small quantity.

1
(B—e2)*
Consequently, the following condition is sufficient for (24) to hold:

1 1
— s .
I (26)
Since B>a, this condition may always be ensured.
We have thus proved that for given e and B satisfying conditions (5) one
can always find sequences k,— and r,—° such that lim[(I —a*n)ra—(1—pkr) n]=1.

F s
Ryms00
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FAILURE INTENSITY OF A SYSTEM ALLOWING
FOR STRUCTURAL FAULTS

The 2uthor conside s the tunc-cependence of the M-chaiacterntie of switens with structural faults
Formulas are dere od (o7 the seitlin < tune of the A -chatactenstic of the svstom

One of the basic quartitative characteristics of reliability is the failure
intensity A(f) of the system, that is, the conditional probability density of a
failure at the instant {. given the satisfactory performance of the system up
to this instant ;2/:

Gy
G " (1)

where G{t)is the probability of the satisfactory performance of the system.

In studying reliability one usually considers models in which any failure
or fault in the system leads to immediate breakdown. In this case the \-
characteristic is usually assumed constant (without regard for the role
played by running-in and aging of the components), and then

G(ty=e-M

(the lower curve in Figure 1), where X is the intensity of the occurrence of
a fault in a component.

We shall consider the case in which the system may continue to perform
satisfactorily, or with certain aftereffects, despite occurrence of a failure.
The above considerations are then no longer true, and it is the aim of this
paper to determine the behavior of the A-characteristic for such systems,
allowing for the cumulative effect of one or more faults. The unconditional
probability of failproof performance of the system in time n when ¢
cumulative faults may occur is determined by the following expression /1/:

n Id ”n &
PR R
C(Hy=F(t)} 1+ L AL ST {2)
@ “ k-zl i.-zl) ) "gzjll-o Q" (Be inv -+ k) ¢

where
Q(ﬁe;ih e ~ik) = (—I)"z(z-vi,) (2"\’;’, f:)' . .(Z—Vi, r»lk);

Vi, i =Miye i ——?.,"—',.. _A“ik N
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Ai is the intensity of the occurrence of the i~th fault, and ..., the
conditional intensity of the failure of the system when a combination of
faults {,...,.ix has occurred. The roots of the above polynomial are 0, v, ;,.
The function F({)is the probability of failproof performance in the absence of
faults.

Consider the case when

Gl(t)=e—k“{l+!‘%(l—e*"‘)}, (3)

where k is the number of components in the system.
Formula (3) describes the reliability of the system when a fault may
occur in any one component (and the system itself does not break down).
The intensity of the occurrence of a fault for all the components is constant,
as is the conditional intensity of the failure of the system due to these faults.
Similarly, if
L e*vt
Vevhe o v(v—vy,2)

Ga(t) =Gi(t) +e HM . 26,,212[

o2t

+ vive (v 2—v) ]’ (4)

then a fault may occur both in any one component and in any pair of
components. Figure 1 illustrates the reliability of the systems represented
by (3) (middle curve) and (4) (upper curve). The graphs correspond to the
cases Wi= const and ki =i, ,= const.

In systems without aftereffects the behavior of the .\-characteristic is
affected only by the intensities of faults (failures) of the individual
components. When there are aftereffects the failure intensity of the system
also depends on the intensities of the failures caused by these faults. For
systems with a single fault, formulas (1) and (3) give

e*klte—vtkl

i (s)

A(t)=kr—

'—fhours

FIGURE 1. Reliability of systems with one and two structural faults.




With accumulation of two faults:

eTRM [ pre v 20,2 (e TV —e T V12t))

Ga(¢) (6)

Aty =k a—

We shall consider tke behavior of the A-characteristic of systems with
one possible fault in three cases:

L) u>n, i.e.. v>0;

2y u<i, i.e., v<0;

3) u=>i, i.e., v=0.

1. If p>%and v>0, it is easy to see from (5) that A~k L as f~x, i.e., as
t increases the failure intensity of the system approaches a constant value,
approximately £2. The behavior of the .\-characteristic in this case is
illustrated in Figure 2a —the straight line parallel to the time axis is
situated at the level k4.

L]
Ly

{114 |~

¢hours

FIGURE 2. Hehavior of the A-characteriztic for vz=0and v<0,

2. If u<iand v<0, it is convenient to transform (5) into the form

]
A,(t)-=k}.[1—- 1 = 1 ]
E k)

g V¢ P

(7

Letting f~=, we see that \(f)—ki+v(Figure 2b).

—vt

k. ( -—1)
3. Ifp=Ai, v=0, the expression € is an indeterminate

v
0
expression of type E Using de 1'Hospital's rule, we obtain

1
o (5 1)

v

=kAt,
v=0.




A (#)~k) as t—oo,

Thus the final result for our model is:

1) when v=0, A ({)—k i as t—co;

2) when v<0, Aj({)—>kr+v as t-—+~.
In practice one usually considers the value of A{f) steady when it has v=0
reached 95% of its limit value. For v<0—0.95(kA++). The obvious problem
is now to determine the settling time of A(¢) in each case. To determine the
dependence of the settling time on the parameters A and p, the left-hand side
of (5) must first be equated to 0. 95k % then to 0.95(kA+v) one can then
find the required values of for various A andp, for the cases vi=0 and +<0.

Sample computation:

1. v=0. Then

ke RM ot
RA— ——G—!W— =095 kA

e—kAl o=t

—_— - == 0,05.
X0 0

Substituting the expression for G,({), we get

14 E2
v
204 %% (8)

e Vi=

We shall not look for the dependence of the settling time on the failure
intensity of the system to the level kX in explicit form; instead we shall

determine the dependence of A* on % {(where A*=\t), so that all three

parameters will be described by a single graph.
Introduce the notation

-

At
wt

then

(m—1)A*

A—pt= -

In this notation equation (2) becames
tm—1)p* 1+k 2

e I—m

—
204k T=m (9)

The graph of this function is illustrated ‘n Figure 3a. The computation
was performed for the case k=L




<
-
R~

FIGURE 3 Dependence of A* on A for vz=0and v<0
u

2. v<0. Reasoning as before, we obtain

Bre kAot

S AT

=0,95 (kA+v)

TV 2 19(1—m)?— 18 mk(l —m)

¢ = BemE— mk (1 —m) .

Carrying out the same operations as before., we again determine the
dependence of the settling time of the A-characteristic on the parameters
» andp. The corresponding graph is that of Figure 3b.
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EXPERIMENTAL DETERMINATION OF THE
PARAMETERS OF THE RELIABILITY FUNCTION
FOR A SYSTEM WITH POSSIBLE FAULTS

In computing the operational characteristics of complex systems, the
need arises to represent a system with an arbitrary number of faults
{which do not cause immediate failure of the system) by a fictitious system
with a limited number of faults in such a way that the reliability functions
of the two systems are reasonably close to each other. The general form
of the reliability function of a system with possible faults was obtained in
/1/. Figure 1 illustrates a typical reliability curve.

Gtt)

N

N

& 4 ¢ ¢

FIGURE 1. Reliability function of a system with
possible faults.

In this paper we describe methods for determining the parameters of
the reliability function for a system with ‘‘generalized''faults, on the basis
of the empirical reliability function. Among these parameters are the
intensity A of the occurrence of "generalized''faults, and the intensity p of
the failure of the system in the presence of a fault.

Underlying these methods are the results of an analytic investigation of
reliability for a system with a single fauit:

A

G{ty=e ' Py (e M —e B,

Let &’ be the instants of time defined by
W=kt (B=1,2,..),

where #’ is the abscissa of the point of inflection.
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It can be shown that these instants satisfy the relations
1T Mazpte TR (b=1,2,..), (3)

which express the interchangeability of the intensities A and p with respect
to the reliability function, i.e.., permutation of the coefficients does not
alter the reliability law defined by (1).

Let y, be the ordinates of the reliability function corresponding to the
points &’ and axthe angles between the tangents to the function at these
points and the time axis; these quantities are determined by the following
expressions:

*
ksl _ kel , .
n ARl oA _ 2: e WHIOMHEN (b 9y,

Up=
TR 5

FRWESM) L e hm1y2,. ).

t =
§ o= ur(n=2)

(5)
The values of y, and tg ax may be measured with a certain degree of
accuracy on the graph of the empirical reliability function. The auxiliary
constructions required to this end are illustrated in Figure 1, To i
determine the parameters A and u in the general case, one need only solve
the system of two equations (4) and (5).

We describe in detail two methods which are the most suitable from the
standpoint of the results and the required amount of computation. In so
doing we shall confine ourselves to equations (4) and (5) for k=1 and £=2,
and therefore we only need the empirical reliability function over a finite
time interval.

Method I The basis of the method is equation (5) for k=1:

tgay=re ", (n

which directly determines the intensity A. In the general case equation (5)
will have two roots. By {3), the second root gives the intensity p. If there
is a double root, this means that A=p.

The following procedure is recommended for solution of the transcendental
equation (1), Multiplying both sides by /’, we get a system of two equations:

_ g
y=—"g
y=e% (Ia)

which are easily solved for u=3A¢" by graphical methods.
Method II. The basic equations

yr=e M porl,
ame M g AERI 2t

lead to a quadratic equation in e *"’;

e—2}‘f|’__pe—lh' +q=0’




p=y; g=()’—ys. (1Ib)

After solving equation (1la), the intensity A may be computed, #’ being
known, for example, by using tables. The second root of the equation yields
the intensity u.

Method Il does not involve the tangent to the empirical reliability function
at the inflection point, and is therefore more accurate than Method I.
Moreover, Method Il yields an approximation of the reliability function
over a longer time interval.

If the empirical reliability function exhibits no clear-cut inflection
point, this means that one of the parameters (A or u) is considerably
greater than the other. In this case the dominant intensity may be
determined by standard methods for the exponential reliability law.
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TUNNEL DIODE SWITCHING DELAY

This article examines tunpel diode switching delay under the action of a linearly increasing voltage
3y means of an approximate analytical soluton for a nonlinear differential equation describing the initial
stage of the switching process, the delay dependence on the parameters of the signal, tunnel djode and
circuit is obtained. The derived formula is useful for calculating the regime and deviation of the discrim-
tnators whicil operate when the input voltage exceeds a certain level, the appropriate upper limit of
increment for input pulse signals, and the delay variation limits for a given variation in the tunnel diode
parameters.

The concept of the transfer function is not usual for tunnel-diode (TD)
pulse units. One car, however, attempt to derive a function expressing the
correlation between the output for a specific type of input signal, taking
in{o account the TD and the circuit parameters. Obviously, such a function
will constitute the mathematical expression of the TD switching process.

If our aim is to oktain a relationship appropriate both for qualitative and
quantitative analysis, the TD characteristic has to be approximated by a
complex expression and the desired relationship which results is even more
involved and inconvenient for analysis. The switching process can, how-
ever, be split into separate stages which can be separately examined. Each
switching stage will then correspond to a certain segment of the TD char-
acteristic, for which a good approximation will be far easier to find than
for the entire characteristic. The results thus obtained should indicate
the influence of the signal, circuit and TD parameters upon each switching
stage and, in addition will help in calculating the operating conditions and
circuit properties (resolution, transconductance of the front, output signal
amplitude, etc.).

Below we shall study the switching delay of a quiescent TD (Figure 1, a)
under the effect of an increasing voltage applied to the circuit input.

R

—~—
S

c®

a)

FIGURE 1. Cut-off TD circuit:

a — circuit diagram; b — equivalent circuit,

199




Let t4 be the time delay from the onset of the signal until the instant
when the voltage u across the TD attains a value of U,, which corresponds
to the intersection of the R-load line and the current-voltage characteristic
of the TD (Figure 2) for an input signal e equal to the static operation
threshold Uy. The delay of a real circuit can be expressed as a sum

tg=tm+AL

The first term represents the time elapsed from the onset of the signal
until the signal attains the value Up,.

The magnitude of {;; depends on the starting position of the working point
and the statics of the circuit. The magnitude A¢ characterizes the circuit
inertia, i.e., its dynamic properties. The signal parameters mainly affect
At; the transconductance of the front of the output voltage for different
signals remains almost unchanged /1/.

A linearly increasing voltage was chosen as the input signal, as this
most often adequately approximates the actual TD switching conditions. In
fact, At is influenced only by that part of the input voltage, which corres-
ponds to the passage of the working point through the maximum-current
domain. This usually enables us to consider the input signal as a linearly
increasing voltage, since for a reliable operation of pulse circuits the
amplitude of the input pulses is chosen in such a way as to exceed the
dynamic operation threshold £y even under the most unfavorable conditions
in the operating range. Therefore, switching on is effected by the leading
edge, a portion of which may usually be replaced in calculations by a
linearly increasing voltage.

Inasmuch as the switching delay corresponds to the passage of the
working point along the tunnel admittance branch, only that part of the TD
characteristic will be approximated when writing the initial equations. We
stress the fact that as long as the working point moves along the tunnel-
admittance branch, the TD constitutes a small resistance and the time
constant of the circuit is very small. Hence, the initial position of the
working point influences neither Af nor the difference Ae=Em—Um (see
Figure 2), when this position does not exceed 0.8/,even for comparatively
large time constants /2/.

For analysis, the circuit in Figure 1(a) is replaced by the equivalent
circuit in Figure 1(b), i.e., the TD is replaced by a nonlinear resistance
(NR), having the current-voltage characteristic of a linear capacitance C:

lo=au?+Butz (1)

(Equation (1) fairly accurately approximates the tunnel-admittance
branch of the current-voltage characteristic of the TD (see Figure 2,
curve 2).

The equivalent circuit is represented by the system of equations
E+e=iR+u;
i={o+ic
o=au?+Bu+tz

. du
le=Cgrs

e=Pkt,




f
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1

FIGURE 2. Analysis of the process of tunnel-diode switching on.

where k is the rate of increase of the input-voltage.

To simplify the equations, we shift the origin of coordinates to the
point 0O/, so that z =0, We shall also assume that £=0. In this coordinate
system all variables will be designated by a prime. The above system
of equations gives the differential equation

4 2 1
du au Rp+ kt ) (3)

Let the parabola parameters o and B be expressed as functions of the
TD-characteristic parameters I}, U, and Uy, (width of the TD characteristic

at the 0.9/, level (see Figure 2).
If the chosen origin of coordinates corresponds to the point

[{(U;—0.5 Ug), 0.91,], then

i—09 1 =a(u—Uo)2+8 (u—Uq)

and, at the point of the maximum,
0.1 I = (U= Uo)2+B{U, = Usg+). {4)

But Uy’ =U;—0.5 Ugy, whence

_ {Us\? Uss
[¢R} 11—'1(—'2—) +§—2—‘.
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dis’

- 4
g 2au’+8,

then, at the point of the maximum,

0=2a-U—2°3 +B

=0 Uog.

By substituting the value g into equation (4), we obtain

_ U Usd?
0.1 Il—a 3 a T'

041,

o= — .
Upo?

By determining o at the level nf,, where n= %‘—, we similarly obtain
1

_4(-m1

o= Un2 y

whence

- _044L/T=n
p=—aUn="g = |57

By substituting the value of « and B into equation (3), we obtain

du’ - 041, ur (
dt Ug?C




or, designating the coefficients of «'* v’ and ¢ by the letters ¢, 6 and #,
respectively, we have

du —qut+bu+he (9)
di

This is a Riccati equation for which an exact solution cannot be found. Let
us therefore search for an approximate solution by the perturbation method

/3/\.\"6 multiply the nonlinear term of the equation by the dimensionless
parameter n, equal to unity:
W=buw+ht+pau?. (10)
Let us assume a series solution
u =g+ o+ s+ plus (11)
Substituting into equation (10), we obtain

o+ Wiy + u?u'z+ wiua=b (uo+ 1 uy+ p2uz + pduzy + At
0ttty + pls A+ piug) 2, (12)

The dots indicate derivatives with respect to t. We obtain the terms of

the series (11) by equating the terms of equation (12), containing corres-
ponding powers of u. To determine the generating solution, we write

1,40=bun+ht for t=0; uy=0,
L (13)
UD—EQ‘ {e "l)t—l)

To determine the first-order correction term we equate the terms of equa-
tion (12) containing equal powers of u.

iz,=b uy+a ug?.
By substituting the value derived for u,, we obtain:
. h2
@=bu + ale (et'— b t—1)2.

The solution of this differential equation at zero initial conditions gives

(14)

2
uy = i’-b”s—[eth+ebt(4—2 b t—b27) — b2 —4 bt — 5.

To determine the second-order correction term, we write

ll2=b us+2 auou.




The second-order correction has the following form:

2 a?h®
bB

v (F O+ F 50 ~3 02— 9 be+ F) —
— b33 —8 b2f2— 25 bt — 30},

wa= [4 e300 4 et (— 22— b t+4) +

We find the third-order correction from the equation
W=b us+au2+2 a ugt. (18)

If in this equation we substitute the expressions defining u,, 4; and us,
equation (16) becomes very cumbersome. Since we are interested in solving
equation (8) within a certain range of parameters, let us see if the terms
containing the factor e can be dropped for our case. This can obviously
be done if, in the worst case,

et b;““ <bt. (17)

The expression for b is

L =7 RI\ 1
b= 0'4l/ 01 Uw T! RC

Here, the worst case corresponds to a 2 ma TD with high capacitance.
Since the 2ma TD tunnel-admittance branch is approximated by a high
resistance, then, after solving equation (8) for high C-values, the origin
0’ must not be chosen higher than 0.8/, i.e., n=0.8. Assuming R=2 I#—
1

and Uleog,

=‘(0'4'2ﬁ+1)%'

If C =10 pF and R = 150 ohm, b=—1.4.10° sec™!. Then, at
4
t=2.10"9%sec, bt=3ed b—zt: . In other words, if we are interested not in the
shape of the curve «/(f) but in the values of Af and Ae, which characterize the
dynamic properties of the circuit, we can drop those terms in equations
(13 —15) which contain the factor e, By doing this, we obtain the third-

order correction:

a3 h4 N
uy=— T (5b%-+64b%(+3506%2 496061+ 1105). (18)

By substituting the expressions for o, #;, 42 and us into equation (11) and
taking p=1, we obtain

W=Adt 4 A+ A+ Art+ Ao, (19)




where

Ay=— %ﬁ—‘;
A= — 2“28”3 (b%+32ah);
Ag=— g_th’ (b%+ 162hb® + 350a%h2) ; (19a)
A =— Fth (b9 4ahb® +50a2h2b% +-960a%H%) ;

s
-4
[

— e (6% 5abO+60a%h%b + 110504,

Dy substituting the expressions defining g, & and 4 in (19a), we obtain
an equation describing the variation with time of the voltage across the
TD as a function of the parameters of the signal, TD and resistance R:

0.32
A= 22 1R g

7
A3= 0;382 2 R2 k* U09(33—‘ 12.8 qo);
04 2 .
Ap= o Iy R B2 Uy (56— 6.4A go s3+5622 g4?); (lgb)
A kUp o s 2 4263 3,3
1= "2 (5% —1.6%. go s+ 812 go? s3— 61,4423 g%);

1
A= RELO B (ot 0 0050602 902 S3+70.720 go),

st
I—
s =0.4R11 I/O—l—n— +U09',

=L Rk,
q°=C U09
If ¢=t, w'=U,. Theresfore, by equating equation (19) with Uy and
solving for ¢, we can, in principle, obtain the sought delay time. But an
analytical solution of an algebraic equation of the fourth degree is practically
impossible. To determine Af we therefore use Taylor's formula

where

& (b + AF) =t (fm') + Af g;‘

whence

o Uy —u'(im')
-~ dul (20)
dt

At

’

=ty

The error involved in using formula (20) becomes smaller for smaller
At values., We therefore assume that

At=A t+Art, (21)

205




and rearrange formula (20) to calculate Aqf; then

—u' (L., +AE)
du )
di |t=aapt (22)

Aot =

We choose Aif arbitrarily, in order to have Ayf+#tm<fq. If At is chosen
correctly, then Ax<€lAf.

To determine U, andty,, we solve the system of equations (2) for C=0.
We ouiain the equation

e(ty—uw

u'? /o ,
au'?+Bu R

—(RB+D)+V(RB+1)?+4R ae(d)

-
w= 2R a ’

./ t—=n 5
U/__ RB"‘] _ 04 WR[]UOQ'*‘UOQ
=7 9Ra 0.8R I,

(RB+1)2 1.6(1—n)R?,2+0.8 —lo—‘tl—n—Rlong'f'Uogz
T 4Rak T6RT; k .

thy =

Allowing for (19), (21) and (22), we finally obtain:

Uy’ — (Agto* + Aste®+ Azl® + Ailo+Ao)

At=Ailt — S B A7+ 3 Adfo+ A, ,

where lo=t'p, +AL
From the system of equations (2) and expression (26) we find Ae:

Ae=FEA¢L (27)

Adding the At and Ae values found by means of formulag (26) and (27) to
the corresponding static values, we can calculate the delay time ¢4 and
the dynamic operation threshold £. In this case, the choice of the initial
position of the working point, i.e., the magnitude of the shift, will only
affect ¢ and Uy, but not At and Ae. When calculating the static values
Un and ¢, formulas (24) and (25) should not be used, since they are derived
for a coordinate system with origin at O’ in order to obtain expressions
determining Af and Ae.

Let us designate by the letter p any of the parameters /;, Uy, C, R and
k. The variation limit of the parameter will be designated by Ap, and the
corresponding variations in the magnitudes ¢4, fm., Af, Um, Ae and Enp by the
symbols 68t4, 8m,8f, 6Um, 8¢ anddE, respectively.




Obviously,

8fg=0L + 68
Uy =hk oty
SE = 6Unm + de.

If Ap is comparatively small,
Uy  Au'\ du’ , 3 du
A (dp 'W)Tf? W) 35 @

()

Ot =~ Ap; (29)

‘)fm

Sty = El‘)“

Ap; (30}

?
then o’ and % in expression (29) can be evaluated at t=f,.

To calculate 8t4 and 8F nfor the given limits Ak and AC, formulas (28)
and (29) are simplified; thus, if

&ty =0, 8Un=0 and aoUZ =0
I

and noting that

we obtain

agu’ a3 du!
— o T ar
au’
df

8t =0f4= Ap.

These formulas help in analyzing the comparative influence of the
various parameters upon the switching-on delay and the dynamic operation
threshold; moreover, they help in calculating, for instance, the following
magnitudes:

1) i¢c foru’=Uy, i.e., the initial conditions for calculating the subsequent
switching stages — the intermittent increase of u’;

2) the additional shift, equal to Ae, for discriminators that must operate
when the input voltage reaches a given level [/1,2/;

3) the discrimination errors for variation of the input voltage slope
within the given limits;

4) the upper incremental limit, equal to Ae, for impulse signals.
Increments exceeding Ae no longer reduce the switching-on delay 12/;

5) the variation limits of the delay and dynamic operation threshold
for given limits of variation in the TD parameters.




=2ma [=Dma
U i el

o4 5,10 £-5 10: 20 pF

0 ! 2 3

FIGURE 8. Variation of voltage «’ with time.

In order to assess to what extent the derived analytical expression
u'(t) approaches the exact solution of the differential equation (8), the latter
was solved on an electronic digital computer. The curves thus obtained
are shown in Figure 3. The dots indicate the calculation results obtained
by employing formulas (19) and (19b). The check was carried out for an
AsGa tunnel diode having the parameters given in Figure 3 for £ =0.5-
8.357 - 107 v/sec and various R-values. The error in determination of A¢
from the above-mentioned formulas was found to be within 3 to 10%. The
error was smallest when the calculations were carried out for a very
large n, i.e., when the origin of coordinates n was located as high as
pogsible. The magnitude may be increased as long as we can still
assume that ic=0 at t=0[2]. For example, for the calculations, the results
of which are marked as dots in the graphs (see Figure 3), n has been
taken in the range 0.75—0.925. For /;=2 ma and € =5—10 pF, n=0.75,
As can be seen from the figure, the accuracy obtained for C = 5pF is
lower owing to the small n. For /; =2 ma and C =1 pF, n = 0.9 (the
same n was taken for /, = 10ma and C =20pF). For /;,=10ma and
C =5pF, n=0.925.

CONCLUSION

1, The dynamic properties of a switched-on tunnel diode cannot be
described merely by the parameters /;, U; and C. It is necessary to
indicate the width of the characteristic near to the maximum, for example,
at the 0.9 /; level; in other words, the dynamic properties of a TD are
characterized by the parameters/;, Ugs and C.

2. A check of the solution obtained for the nonlinear differential
equation describing the first stage in the switching process indicated that
the formulas derived suffice for quantitative calculations when the para-
meters of the TD and the signal vary widely within the above-mentiened
limits.




3. The derived formulas also apply when the TD operates as an active
resistance. It suffices to determine the parameters of the total current-
voltage characteristic of the TD and the load resistance.
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M. F. Grinkhof

DESIGN OF A TWO-CYCLE SHIFT FERRITE-DIODE
REGISTER WITH ALLOWANCE FOR COMPONENT
TOLERANCES

The design of a two-cycle shift register using transformer-type ferrite-diode elements is described,
taking into account the tolerances in core and diode parameters and in cycle current. The results obtained
by this procedure are compared with the results which are derived assuming exact values of the parameters.
The derivation of the design equation is described. The method can be used to draw up design equations for
other particular types of ferrite diode shift registers,

The design procedure for ferrite-diode elements using the exact values
of the magnetic and electric parameters has been developed to a consider-
able extent. This procedure makes allowance for parameter deviations
due to changes in temperature from their nominal values. The results of
this design procedure, however, are not fully consistent with the experi-
ment, and tedious and time-consuming adjustment is therefore inevitable
for all ferrite-diode elements. The main reason for this discrepancy is
that the design calculations are based on the statistical averages, and thus
ignores the intrinsic scatter of the core and diode parameters.

in the present paper we have tried to devise a design procedure for a
two-cycle shift register using transformer-type ferrite-diode elements with
one coupling diode, taking into consideration the actual tolerances of the
core and diode parameters and of the cycle current.

~ —Yy . —
Wy (5 (":w; g w,tSz{wz » w,«i i)wtl
- Me—* ) --

!

—e o

FIGURE 1. Circuit diagram of the shift register.

Figure 1 is the circuit diagram of the shift registers whose parameters
are specified with certain tolerances. Suppose that the transient time of
the forward diode resistance and the rise time of the cycle current are
both negligible (these assumptions are valid if the cycle frequency j, does
not exceed 150 cps). In this case we may use in our calculations the
amplitude value of the cycle current /,, and the diode can be simulated by
a source E, with forward internal resistance R.




The parameters £; and R are determined from the linearized steady-
state current-voltage characteristic of the diode {Figure 2).

R=ctlgot

T

FIGURE 2. The current-vol-
tave characteristic of a silicon
dinde,

The cycle pulse frequency f, is generally known from the start, and we
thus know the maximum read time trma, which for a two-cycle register is
defined by the equality

.1 ,
Coar B2y (1)

where &, is a margin (safety) factor (&.=1).

Let v be known. The aim of the calculation is then to determine the
turn numbers w, and w, and the rated ampere-turn value I,w, of the winding.
If the circuit parameters are specified exactly and the reverse flow of
information is completely suppressed by the diode cutoff voltage Ey, which
is significant for silicon diodes (Figur'e 2), the transmission of a ONE

signal by the register is described by the set of equation

20, w; — 20wy =R + Eot, ; (2)
Lowor, =Swili + Holyt + g, w2 {3)
(Dn+ D)) w2a— 200w, =4, R + Eot,; (4)
G, @1 =Sw2+ Hoslot (5)
Towgr,=0Qa (D)) + Holyv, + g, @, (8)

where @, and @, are the residual magnetic fluxes in the first and the second
cor=2, respectively;
g, is the electric charge in the coupling loop during the read
cycle of the first core;
9. is the electric charge in the coupling loop during the write
cycle of of the second core;
is the read access time of the first core;
w iS5 the write access time of the second core;

€ <t
-
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Su1 and Sy are the switching coefficients of the first and the second
core, respectively;

Hor and Hg are the equivalent coercive forces for piecewise-linear
approximation of the transient surfaces of the first and
the second core, respectively;

@, is the magnetic flux through the first core;
L and /> is the length of the average magnetic lines in the first and
the second core, respectively;

4
Qu= f (Hy— Ho)dt:
il

H, is the magnetic tfield in the first core;
t is the time.

The function ,,Q:;(®;) is a modification of the transient equation of the
first core in integral form /1/. The equations are simple expressions of
the fundamental laws of electric and magnetic networks and the transient
equation of the core, all integrated over the read time 1; and the write
time Ty 71/.

Fhe function ,Q,(®d,) is plotted in Figure 3 by the solid curve. To
simplify the analysis, we linearize this function by the expression

LQu= ___.51;‘;!; (1+ g;),

which is plotted in Figure 3 by the dashed line.
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FIGURE 3, Linearized function
1Qu) .

Equation (6) now takes the form

Towots = Swily ( @,

B 1+ 6—(>+Ho;ll'tw+qwuh. (Ba)

Eliminating @, and g, between equations (4), (5), and (6a), we find the
write time

. Swale (SwiiR+ 20, w9?) + Sitl 20 nw)? (1)
20w We (IQWO—H0|[|) —_ Hozlz (SwlhR—{-QCDﬂU)g’) ——S,,,ll,Eow‘ :
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The read time 1, is found from (2) and (3):

_ iswll(+2w2((prlu'2_a)r2wl) ‘8)
Te= R(lgws— Hol)) +w:Ep \

The register will function if the write time 1, is at most equal to the
read time 1,. Thesetimes are functions of the core and diode parameters
and the corresponding tolerances. The condition ,<t. is always satisfied
if we take Ty, =Tr.» Where 5., is determined for tolerances with such
signs that give the maxinmum write time, and %, corresponds to tolerances
with signs which ensure the minimum read time.

This approach, however, will ensure an excessive safety margin, i.e.,
the inequality ww<t, will become too pronounced, since the expressions
for 1, and r, will inciude the same parameters with tolerances of opposite
signs, which is clearly ridiculous. Therefore t, and 1, should be set
equal for a combination of tolerances of such signs which ensures a
maximum ratio of write-to-read w/tr .

Let us find the signs of the tolerances which give a maximum value of the
ratio 1,3, . To this 2nd, we write =zt in the form

<l

¢

- S ol (SethR+ 2Dy wo?) + Sii/,2@052 x
2D, wo(lowo— Horly) — Heala (Sin iR+ 2@ w2?) — S liEgwy
% R (lgwo— Haly) + w2k
RSy“ll+2&1’:(q)r|u'9—(pr232'|) )

a

T

Analysis of equation (9) shows that w, T 1 is
DL, ©at, Huli T, Hexla 1, Towe ), Suili T, Swelat, Evi, R 1,

where the upward arrow 1 implies increase and the downward arrow }
decrease of the particular parameters, All parameters with the upward
arrow 1 should be taken with positive tolerances, whereas | corresponds
to negative tolerances.

The first design relations with allowance for parameter tolerances can
thus be obtained by setting the write time equal to the read time, provided
that the corresponding relations include the parameters with positive or
negative tolerances in accordance with the results from equation (9). This
result, however, can also be arrived at by using the starting equations of
a circuit which is substantially simplified if the write and read times are
taken equal. In this case, the function [,Q¢,(®)) does not have to be
linearized. The set of starting equations for ==, is

(10)

‘2<D,.w2——2CD,qw, = (/R-i—Eo’t:
[y2gr =Sl + Holliv + qwo; (11)
quy = Sialz + Hoalot, (12)

where 1=1;=1ty and g=¢,=gy.
We rewrite these equations using the parameter tolerances and the
tolerance in the cycle current (the cycle ampere-turns). We introduce the
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following abbreviated notation:

O+ AD, =D, O —AD, =0 b Towo+ Algwo = 1w,
Towo— Alywa=1owyt, etc.,
where I is the deviation of the parameter from its rated value. Seeing that

the rated values of the parameters are the same for all the cores, we have
in final form

20, we— 20, w=gRT 4 Eyv; (13)
[oonltzsuvlT+HanT+qu'2: (14)
gy =Sult +Hol'x. (15)

Eliminating ¢ and v between these equations, we end up with a single
equation:
20 Holtw? — 2w, Hol /(P —D 1) — Sl Egtlwe — (20,1 w Hol T — Sl Egw,)
20, @, wg— 202D, — Sl TR (16)

I()mlo'L =

Let us determine the signs of the tolerances which ensure maximum
read time. Analysis of equation (8) shows that

T‘-T, if swlllf, (DrlT, (I)rzl, IQWQL Ho]llf, Eolande.
We can now write equation (8) for /,we! in the form

woF ¢
- (O, w,— D, ) — %’@Q—" (17)

10w01= f l +Ho[r+

TUmax

j{l

Equations {16) and (17) give the minimum value of the cycle ampere-
turns /yw,t and the turn number w,, if w, is known. In most cases, however,
w, is not known and should be determined.

The turn number w, is generally chosen so that wy L <wni<w where
w corresponds to the condition that the current through the couplmg loop
is equal to the maximum allowed current through the diode, and w, corre-
sponds to the case when the reverse flow of information (noise) is cz)m-
pletely suppressed.

In our case this choice of w, is not immediate, since all the equations
are solved simultaneously. From the energy aspect, it is advantageous
to take the maximum permissible turn number w,. Since the parameter
tolerances are taken into consideration, no allowance should be made for
a margin of noise resistance of the register, and the calculations can be
carried out for the maximum permissible turn number w,.

The condition of noise suppression is

20w ka
Tr

<Ey (18)

’

where the left-hand side is an expression of the e.m.f. amplitude induced in
the winding w; when ONE is read; k4 is the amplitude factor (ka= 1.3—1.5);
Es is the diode cutoff voltage (Figure 2).
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Inserting the read time r_ in (18) from equation (8), we get

2Mm,y @1k A[R (fowo— Hoil)) + w2Eo] <ES (19)
RSuily + 2w (D) wo — Pr2wy) o

The inequality is played down if we take
@1 ), @i2t, oo} Hotli ), Sulid, Eot, RYEy'} -

We take the sign of equality in (19), and this gives the maximum turn
number x,. Using the tolerances, we thus write

R (oo’ — Holt) +3pEo!
"o, 20)
Eo™ =2, Sk o o (@, Twe = @, (

We have obtained a set of three equations (16), (17), and (20) for
circuit design.

Note that the current in the coupling loop is limited by the maximum
allowed diode current, i.e., the following inequalities should be satisfied:

7 2" max .
av.d To (21)

4r R
haz (%) ke (22)

M3

where I,, 4 is the maximum permissible average diode current;
{5.4. 18 the maximum permissible amplitude of the diode current;
Grme 1S the maximum permissible charge in the coupling loop;
To is the period of the cycle pulses.
The charge in the ccupling loop during the read cycle is obtained from
equations (2) and (3):
2 we = 3D pwn) (fowo— Holy) = EoS .0l
7= Rtlowo— Holyy +w:2E, ’ (23)

Analysis of equation (23) shows that g} if

(D"T q)l Svr!li E«’l Rl /O:Q'()f HO]/‘ i e.,

_ 20Dy P — @ty (fawe” — Holt) —~ Eg* St
Drmax = R [T —111[3)—5—:,.,05() ) (24)

It can be shown that g/t = (g, ;) mx fOr tolerances of the same signs.
Inserting g¢;,,.» ¢ and 1, with parameter tolerances of appropriate sign
in inequalities (21) and (22), we finally obtain

I _'_)((D,."il‘ ~,* J)|)([ow0‘ —Hgl- ) Eyt Sul‘

hy.a= 7 - A
av.d= 7 B(Tawo = Hal ') + okt (25)
by SO DD ) UoitoT —Hll) — Byl Sult

a.a.Zks R-S.[- 2w, (@, g B, L) (26)

It is readily seen that as the temperature decreases /%, Trumy, and
drmax iNCrease, and inequality (19) becomes more pronounced. Thus, to
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allow for the temperature effects in register design, we should insert in
equations (26), (17) and inequality (25), (26) the values of the parameters
determined for the minimum given temperature and in equation (20) the
values of the parameters for the maximum given temperature.

Register design thus reduces to simultaneous solution of equations (186),
(17), and (20) and verification of the diode operating conditions using
inequalities (25) and {(26). If at least one of these inequalities is broken,
the coupling loop current should be reduced. This can be accomplished by
connecting the bias Fp in series with the diode (Figure 4). In this case the
turn number w, increases and the coupling loop current diminishes. The
design equations are not affected; the only difference is that E¢+Ep is
substituted for E, and E¢'+Eb for Ey’. The sign of the tolerance in Ep coin-
cides with the sign of the tolerance in Ejand E¢, respectively. In practice,
the source is built with a very low internal resistance, which is ignored in
calculations.

FIGURE 4. A circuit diagram of a shift register with source of bias
in the coupling loops.

This design, however, has two shortcomings:

1) the simultaneous solution of equations (18), (17), and (20) involves a
solution of a complete equation of higher than fourth degree, i.e., an
equation which can be solved in each particular case only by some
approximative method;

2) the transient response of the core 1/t=f(H,,) is approximated with
a straight line in a wide range of switching times (all equations contain the
same values of S,/ and Hyl ), which in some cases may lead to substantial
errors.

The first shortcoming is inherent in the design method and thus cannot
be avoided.

The second shortcoming is readily eliminated by introducing four read
times, which are actually obtained for various sign combinations of the
parameter tolerances, and by taking the corresponding H,y values directly
from the 1/v=J(H,y) curve.

Seeing that

Sl Hol=1H o
and using the above relations, we obtain instead of (16), (17), (20), (25),
and (26), the following set of equations:

2(!!2(@ ng—d),lw,) ngoJ' N
iy - (27)

Towe d =1H", 1 + :
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10&’01=[Havr( I+ -z:‘?‘). (28)
1

By = 20 2k (29)

T
/J,V_'d_éw_—r"f_’av_')‘r_ . (30)
1 Lo Ha ks (31)

where . =1: and H,,'' the magnetic field corresponding to this read
time, with positive tolerance (the scatter of the
1 t=f(H,) curves is taken into consideration};
H.." is the magnetic field with positive tolerance,
determined for the magnetization reversal time 1
under conditions of equal read and write times

(t=1,=1) , where t is defined by the relation

oax

2 (Dptuy— @S @)
R (lgwet —IH, TV + ot °

(28a)

=

1,” is the minimum read time,
v _ 2200(@, s 2y — D, wi) .
P Tten = B (Twot — IH %) +wiEel (29a)

T

H "¢ is the magnetic field corresponding to the read time 1,” with negative
tolerance;
1" is the read time leading to maximum charge in the coupling loop:

, Qe (Dt g~ Dt awy)
” — .
R (TomyT —TH, 00 ) +woEor (30a)

T
H,” is the magnetic field corresponding to this time, with negative
tolerance.
Simultaneous solution of equations (27), (28), and (29) gives

o Lo 32
e L (32)
w,= B2+V(B/2)?+AC Hf/Q)”AC, (33)
where
_ Q(Dr? N — 2¢rlwl _%i lh:avT .
A= Rl:fmax » B= Ri‘:Tmax + R + wy ’

C=1Hyt —IH' .

lowy! is determined from equation (27) or (28) after w, and w; have been
calculated.

The values of the parameters in equations (29a) and (32) are taken for
the maximum given temperature, and in all the other equations the values




of the parameters correspond to the minimum working temperature. The
bias EFyp is allowed for as described above.

The final result is thus 5 design equations, (32), (293.), (33), (27), or
(28), and (28a), and three expressions for checking the diode operating
conditions, (30), (30a), and (31).

This design procedure was applied to a digital shift register. Initial
specifications:

Core VT-5 (0.16 VT), measuring 3X 2 X 1.3 mm;
diode D220A;

maximum read time 7 _, = 4.0usec;

cycle frequency fo = 100kc;

temperature range from —10°C to +70°C.

The core parameters were borrowed from /1/ and calculated for —10°C
using a linear temperature dependence between —40°C and +20°C; the
diode specifications are from /2/. The diode parameters were assumed to
remain constant with variation of temperature: the change in these para-
meters is negligible compared to the corresponding change in core
parameters.

The results are summarized in Table 1. We see that the procedure
which makes allowance for tolerances leads to results that markedly differ
from those obtained assuming exact values of the parameters (version 1).

TABLE 1.

Design D, 8lHavy, 0R, 3Ly BEY,
version % 3Ep, %

1

For example, a tolerance of + 40% for the cycle ampere-turns and
tolerances of + 10% for all the other parameters (these are quite realistic
figures) roughly doubles the cycle ampere-turns and the turn numbers
w, and w,. Moreover, a bias of 2.6 V is needed. Analysis shows that as the
tolerances increase, the range of possible read times is broadened. Thus,
if the maximum read time is fixed, the minimum read time decreases. To
ensure faster switching we should increase the cycle ampere-turns and the
turn number w,, which is consistent with the results of our claculations.
The increase of bias entails mainly an increase of the ratio wi/t,,,, §0 that
the e. m.f. induced in the winding w, when ONE is read increases.

Although this design procedure does not ensure complete damping
of small disturbances — one of the main requirements of stableoperation




of the register — it is hoped that its application will greatly simplify the
tuning and adjustment stages.

I would like to acknowledge the help of Yu. M. Shamaev in formulating
the problem.
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A.Ya,. Khesin

A TV METHOD FOR AUTOMATIC CONTROL OF
TV DISTORTIONS

Fhe automatic control method for 'L V distortions considered in this paper uses a 1V transducer and an
optical coding unit., It is intended for line production control in the manufacture of TV sets and picture
tubes. The effect of the resolving power of the transmitting tube on measurement errors is considered.

INTRODUCTION

Nonlinear (scale) and geometrical distortions of the TV picture have a
serious influence on picture quality, since the eye is exceedingly sensitive
to any abnormal curvature of straight lines and distention or contraction
of the component elements of a pattern. As a result, the permissible
nonlinear and geometrical distortions of the TV picture are not more than
a few percent, and the linear dimensions of the various elements of the
picture should therefore be measured with an accuracy of a few tenths of
a percent in order to be able to detect these slight distortions. This high
accuracy is not always attainable in photographic and projection measure-
ment techniques /1, 2/. Moreover, these methods are extremely time-
consuming and tedious. Therefore, they are inapplicable to complete
production control in TV industry and furthermore they do not completely
eliminate the danger of subjective errors, as they are based on visual
estimates of test table distortions. The photographic method ensures
stage-by-stage documentation of the picture distortions, but is it not very
efficient in view of the lengthy time needed to process the photographic
plates. The projection method does not make provision for any permanent
follow -up records, which are absolutely essential for future analysis and
further improvement of production.

A complete objective control of TV picture parameters which gives a
comprehensive set of documentary records after each test and is neverthe-
less adaptable to industrial purposes is ensured only by automatic control
systems.

1. THE APPLICATION OF A TV LOGIC UNIT FOR
AUTOMATIC CONTROL OF TV PICTURE PARAMETERS

TV picture distortions can be controlled and analyzed by a TV logic
unit with a TV transducer or pickup element mounted in front of the test
screen.




The brightness intensity of the Soviet-made picture tube 47LK1B and
59LKIB is not less than 100 nit; the illuminance produced on the photo-
cathode of the transmitting tube is thus of the order of 10lux, which is
quite sufficient for the mass-produced vidicons.

The use of a TV transducer and the application of TV scanning technique
makes it possible to convert many-dimensional starting information
contained in the analyzed TV picture into a one-dimensional electric
signal. In this way, the relevant information for further analysis by the
logic unit is isolated fairly easily.

The two-dimensional black-and-white moving picture on a TV screen
can be described by a brightness function B(x.y.{) which depends on three
arguments: the two plane coordinates x and y, and the time ¢{. The picture
can thus be resolved into a spectrum of frequencies o= gTI and spatial radian
frequencies vy and w,. The result is a triple Fourier integral

o ’
B(x,y.t)= (VIT—n) fffs(mm,y,u,)e‘wx‘“”r“-*‘””dw,dm,,dw, (1)

— - -

where S(w: vy, o) is the three-dimensional spectrum of the function B(x,y,1).
In automatic control of TV test tables the picture is fixed: this is a

black-and-white test table produced on the screen by special test signals.

As in (1), it can be resolved into a double Fourier integral

i(mx1+m},y}

B(x,y):;;; f fsmx,my)e dosde, . (2)

—c0 —a

The picture is transformed by time scanning in the direction of the axis
xor y. The electric signal at the output of the TV transducer, u=f(f), is
therefore only a function of time:

I B |
i = mfsm)e do . (3)

TV methods are currently used on a fairly wide scale for measurement
and monitoring of linear cimensions /4,5/. According to the type of output
information, we distinguish between digital and analog TV measuring units.
In the analog unit, the pulse duration tp corresponding to the monitored
dimension is converted into voltage or current. In a digital system, the
time is converted into a digital code {generally binary), i.e., time-pulse
coding is employed.

The errors of TV measurement methods are associated with the
peculiar design features of the transducers and the TV transmission
requirements /4/. The main error sources are the nonlinear and unstable
beam deflections, instability of the camera tube parameters, tube mis-
alignment, fluctuation noise, distortion of video signal leading edges, and
errors in pulse counting. All these errors, except the limited resolving
power of the camera tube and pulse counting errors, can be eliminated by
using a digital TV measuring system with optical coding of the monitored
picture /5/. This method employs spatial quantization of the picture by
means of an optical standard (a coding mask, afiber-optics codingunit, etc.)
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through which the test picture is projected onto the photocathode of the
camera TV tube. A digital electric signal is developed in the transducer
by scanning the coded projected picture.

Since in this method the message is encoded before it has been distorted
in the transducer and the communication channel (by the previously listed
sources of errors) and since the optical coding devices are insensitive to

electromagnetic noise, the system may ensure high accuracy of measure-
ment.

2. THE DESIGN OF THE AUTOMATIC CONTROL
SYSTEM

Figure 1 is a block diagram of an automatic TV distortion control
system intended for line production control in picture tube and TV set
industry. The system uses the principle of optical picture quantization.

Hood

]\ Objective r_‘q

b~

i Video Pulse

~
T —F amplifier counter
_ plifie
Camera

tube

7
Coding
mask Sweep
generator

Transducer

Pulse signal Programmed
generator device

i !

Storage Recording
unit device

FIGURE 1. Automatic control system for TV picture distortions.

A newly assembled TV set is transported by a start-stop conveyor which
stops for 2 or 3 minutes right in front of the TV test transducer. The
position of the transducer unit is relative to the TV set to be tested is fixed,
as the two are connected by a rigid opaque hood.

The TV trandsucer should lie on the optical axig of the picture tube. To
reduce the hood length, the distance from the transducer to the screen can
be made less than five times the screen height, but in this case special
corrections must be introduced to allow for screen curvature (the calcula-
tion procedure is described in /6/).

The test picture on the screen is produced by a special test pulse
generator. This picture is now projected onto the photocathode of the
camera tube, after passing through an optical coding mask interposed




between the test screen and the camera tube. The coding mask is a pattern
of horizontal or vertical lines (Figure 2a and 2bj strictly parallel to the
scan direction; an alternative mask uses a checkered pattern (Figure 2c¢).
When the projected picture is scanned, the video signal at the output of the
camera tube is a series of electric pulses which are amplified by the video
amplifier and delivered to an electronic pulse counter. The logic unit
analyvzes the results, which are then recorded by a special recorder. A
programmed unit carries out a preset test program in accordance with
certain industrial specifications which are stored in the storage unit. The
programmed unit also sends control signals which drive the TV sweep
generator and the test signal generator.

FIGTURE 2, Coding masks,

To determine the nonlinear distortions in the horizontal direction, the
test pulse generator produces a series of vertical black-and-white strips
on the screen (F‘igur‘e 3a}. The width of the strips in different parts of the
screen is determined by the nonlinearity of the line scan. In single-line
scan along the line a—«’ in the transducer, the transducer output consists
of successive pulsetrains, and the number of pulses in each train
tm, g, N3, ...) depends on the width of the corresponding white strip on the
screen. The logic unit uses the difference and the sum of the number of
pulses corresponding to the widest and the narrowest strip to determine
the nonlinear distortion coefficient:

Ky =2 8max—fmn yg00, (1)

Nmax N

b

M1
Mz
ms
& Ma

Iby
b)

FIGURE 4, Picture <f test signals on TV screen,

Vertical nonlinear cistortions are similarly determined, but the test
signal produces a picture in the form of horizontal strips (Figure 3b), the




single-line scanning in the camera tube is done in the vertical direction
along the line b —)', andthe pulses m,, ms, m;, .. are counted.

In vertical scanning, however, care should be taken to avoid interference
from lines and quantizing elements of the coding mask. To this end the
nuniber of active lines should be a multiple of the number of pairs of
vertical quantizing elements.

Geometrical barrel, pincushion, and keystone distortions are determined
using a test signal which produces a uniformly white screen. [I'he screen
edges are darkened by a "'window" test signal (Figure 3c). Geometrical
distortions lead to certain deviations from the rectangular shape of the
window. Therefore, after scanning along several lines (first horizontally
and then vertically), the distortions can be determined from the difference
in the numberof pulses along parallel segments. The minimum number of
scan passes in these measurements is three. These scans give the pulse
counts ), ls, {3 and Ay, ks, hs.

In barrel distortions [,>{,, [,=I/; and the geometrical distortion cocfficient
in the horizontal direction is calculated from the formula

b=l 1009, (5)

I\gb:212+/|

For pincushion distortions lh</;, {;=[3 and

Kap =28=1
1

0
o Ty 100%.

For keystone distortions

Ko =220 1009 (for>1). (7)

l34+14

The corresponding distortions in the vertical direction are similarly
calculated from the pulse counts Ay, k2, hs.

As the nonlinear and geometric distortions must be measured in two
perpendicular directions, the ruled mask should be changed or turned
through a right angle when the scan direction is changed. This can be
avoided by using a checkered mask, which, however, is not particularly
favorable from the viewpoint of parasitic amplitude modulation: to avoid
this parasitic modulation, the scanning should be done along a single line
of quantizing elements.

3. THE EFFECT OF LIMITED RESOLVING POWER
OF THE CAMERA TUBE ON MEASUREMENT ACCURACY

The accuracy of linear measurements by the method of optical coding
is limited by the resolving power of the camera tube, which determines
the minimum size of tlie quantizing element in the coding mask.

The finite scan beam aperture of the camera tube reduces the depth
of modulation of the digital signal (Figure 4). The guiding electrode of
the camera tube generally has a circular opening, and the scan aperture




is therefore also nearly circular, If the aperture diameter (the beam cross
section diameter) d is less than the width g of the mark projected onto the
photocathode by the optical coding mark, the quantized signal has 1007%
mark, d>a, it simultaneously captures both a black and a white area, and
the depth of modulation is naturally reduced. For d=2a the beam
simultaneously covers one black and one white area, and the signal is
converted into a virtually constant voltage (the modulation depth goes to zero}.

usig

2axd>a

g ¢
FIGURE 4, The effect of beam aperture of the camera tube on sig-

nat -hape.

Two quantizing elements are needed to obtain one output pulse,
and the maximum number of pulses at the transducer output during a single
line scan is therefore equal to half the tube resolving power z:

(8)

v

xvmax =

Since the background of the camera tubes is considerably nonuniform
and z markedly drops toward the edges of the photocathode, the resolving
power which determines the Npmax of the digital unit should be calculated frorm
the aperture characteristic of the tube assuming a decrease of not more
than 50% in modulation depth.

Nmax is sometimes called the discreteness of the digital signal, D. The
reciprocal of the descreteness D determines the maximum relative error in
measurements of linear dimensions by the optical coding technique, ¢ =1/D.
This ¢rror is associated with pulse counting inaccuracies which are due to
the fact that a non-integer number of mark pulses are accommodated
within the scanned segment.

D and & determine the quantity of information which is obtained when
one linear dimension is measured with a digital TV transducer:

I=l0gzD=logz—:—. (9)

Thus when the resolving power of the transmitting tube is lowered or
the size of the quantizing elements of the coding mask is increased, we
lose information.
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FIGURE 5. Curves of scan nonlinearity for six commercially produced
UNT=-47 TV sets (Ogonek model):

a — horizontal, b — vertical (A xand A y are the dimensions of two ad-
joining squares of the checkered mask, N is the number of pairs of
squares).

The information converning the TV image is always transmitted by tubes
which inevitably respond after a certain buildup period to the average screen
intensity during that period. Instantaneous-action tubes (dissector type)
cannot be used for these purposes, since the position of the scanning
element on the picture tube sreen and the position of the sensing element
on the camera tube photocathode do not coincide at any given instant.

Vidicon is the most suitable buildup camera tube for TV transducers
used in automatic distortion control.




Figure 5a shows the curves of horizontal scan nonlinearity and Figure 3b
of vertical scan nonlinearity for six Ogonek TV sets (UNT-47} from the same
line. The two adjoining squares of the checkered field were measured at
the end of the assembly line with a "parallex-free’’ rule. We see from the
curves (Figure 5) that the nonlinearity is distinctly nonmonotonic: moreover,
it follows different curves, and its variation should therefore be measured
both over the entire screen and along small segments. In TV measurements
the nonlinear distortions thus should be measured at least in 8 — 10 vertical
and 6 — 8 horizontal white strips of the test signal. To increase the number
of pulses in each series and imgprove the measurement accuracy, the white
=trips of the test table should preferably be made wider than the black
strips (Figure 3). The permissible geometrical distortion is also fairly low
{2 - 5%). One-inch vidicons (with a diameter of 25 mm) which have a fairly
low resolving power therefore cannot ensure the required accuracy (which
must be one order of magnitude higher than the measured dimension).

Figure 6a shows an oscillogram of the transducer output signal in a
svstem using a one-inch vidicon. The oscillogram is photographed off the
screen of the S1-13 oscilloscope. We see from Figure 6a that for the low
signal discreteness (0 of the order of 50) obtained with large coding mask
¢lements (d<a) the depth of modulation is fairly large and the signals are
readily counted. When the mask elements are made smaller, the depth of
modulation decreases and the signal nonuniformityv along the line becomes
more pronounced. Figure 6b is an oscillogram of the output signal obtained
with the same transducer but with a small coding mask element. In this
case the resolving power of the transmitting tube is insufficient (d>a) to
ensure a discreteness of about 200 with a favorable signal ‘noise ratio. The
difficulty can be bypassed however, by using a band filter which isolates
the first harmonic of the signal. The filter output (Figure 6c¢) is a signal
with a sufficient amplitude and an adequate signal/noise ratio, which can be
delivered to the pulse counter after suitable limiting treatment.

Experimental tests of the application of the TV transducer unit for
automatic picture distortion control showed that insufficient resolving
power and insufficient field uniformity are not the only shortcomings of the
one-inch vidicon, and it is thus not entirely suitable for large-scale plant
application, The additional shortcomings include its warming time and
adjustment before the actual control is begun, variation of parameters due
ta voltage and current fluctuations, and others. To reduce the effect of
these factors, the vidicon should be connected to a separate control circuit
of its own -7 and the voltages and currents should be stabilized.

The currently marketed 1.5-inch vidicon has a resolving power =z of at
least 800 lines over the entire picture field. A transducer using this vidicon
will therefore give a signal discreteness of at least D=—22~=400, i.e., the

maximum relative error of linear measurements along the entire line
91713‘18 at most 0.25,. However, for D=400 the depth of signal modulation

may prove insufficient for further processing (unless a filter is employed).
Yet even a somewhat lower discreteness of this vidicon ensures a
measurement accuracy which is hot less than that of the photographic or
projection methods, ir which the statistical scatter of distortion
measurements in repeated tests isx 0.5~ 0,.75%.
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FIGURE 6, Oscillograms of discrete signals at the vidicon
output:

a ~for p~ 50, b —for v~ 200, ¢ —for D~ 200 with a band
filter.

The measurement accuracy can be considerably improved by using a
fiber- optics coding device /8/: here the test line is projected onto one end
of the device, where the lightguides are arranged linearly, whereas the
lightguides at the other end are spaced out in several lines of a rectangular
pattern and the distances between them are greater than the beam aperture
of the camera tube. The number of digital pulses at the transducer output




ig thus not limited by the resolving power of the camera tube: it is actually
determined by the number of lightguides in the fiber-optics device. However,
the TV distortions should be measured in two directions, and therefore in
arder to avoid turning the fiber-optics device mechanically through a right
angle, a TV test unit with two separate transducers should be used on the
assembly line, one for horizontal distortion measurements and the other

for vertical distortion. If a more sophisticated fiber-optics device is used,
with the lightguides at the input end arranged in two lines — a horizontal and
a vertical one, only one transducer is naturally needed.

Bibliography

L. GOST 9021-64. Priemniki televizionnye cherno-belogo izobrazheniva
(Black- and - White Television Sets: U"SSR Government Standard
9021-64), — NMetody elektricheskikh, opticheskikh i akusticheskikh
ispytanii. Moskva. 1964,

2, Ol'shvang, E.V. Izmerenie geometricheskikh i nelineinykh
iskazhenii na ckrane televizora {(Measurement of Geometrical and
Nonlinear Distortions on a TV Screen). — Tekhnika Kino i
Televideniva, 3. 1966.

3. Khesin, A.Ya. Ob avtomatizatsii kontrolyva televizionnykh priemnikov
(Automatic Control of TV Sets), — Tekhnika Kinc i Televideniya,
10, 1964,

4. Polonik, V.8, Televizionnyve metody izmereniva razmerov predmetov
(TV Methods of Size Mcasurements)., — Tekhnika Kino i
Televideniva, 11. 1962,

5 Rabinovich, V,A, — Soviet patent No. 148529, 1 Qct. 1960.

B, Khesin, A.Ya. and A,A.Kurmit. Izmerenie iskazhenii rastra na
ekrane kineskopa. — Tekhnika Kino i Televideniyva, 4. 1966.

7. Bogdanov, G.M. and S.P.Trifonov. Avtomaticheskava regulirovka
rezhima vidikona (Automatic Control of Vidicon Operation), —
Tekhnika Kino i Televideniya. 3. 1966,

8. Rabinovich, V.A. — Soviet patent No. 153126, 29 April 1961,

229




X 621,38.694.3 — 555.5

A.Ya.Khesin, T A.Grendze

THE USE OF PHOTOELECTRIC SENSORS FOR AUTOMATIC
CONTROL OF GEOMETRICAL TV DISTORTIONS

some methods of automatic analysis of the shape and the position of lines on a TV screen using photo-
electric elements are considered. The effect of parasitic brightup of the picture tube giass on the accuracy
of position measurenients is considered.

INTRODUCTION

The TV distortions can be determined by measuring the linear dimensions
of different elements of the test table and analyzing the geometry of various
patterns on the picture tube screen. The measurements of various test
table elements and their comparison, prescribed by'the USSR Government
Standard GOST 9021-64 /1/, provides the essential information on the
magnitude and the kind of nonlinear and geometric distortions. The linear
dimensions naturally can be measured and compared automatically /2/.

The relevant information can also be obtained by analyzing the shape of lines
in different parts of the screen or by measuring the displacement of marker
points on the screen.

Geometrical distortions produce a definite curvature of the horizontal
and the vertical lines on the screen. The essential information on
geometrical distortions is therefore obtained by analyzing the shape of
narrow horizontal and vertical strips or by measuring the position of the
boundaries between black and white fields in different parts of the test table.

In this article we consider the possibility of automatic analysis of line
shapes and positions on a TV screen using photoelectric sensor elements.

METHODS OF AUTOMATIC ANALYSIS OF LINE SHAPE
AND POSITION ON PICTURE TUBE SCREEN

The shape and the position of lines need be analyzed only near the very
edge of the TV screen, where the geometrical distortions are at their
maximum. The shape and the position of a vertical line should be measured
near the left- and the right- hand margin of the screen and horizontal
distortions are measured near the top and the bottom edges.

To improve the accuracy of this analysis, the thickness of the bright line
on the screen should not exceed the size of one element in the picture.
Therefore, one of the raster lines if illuminated, can be conveniently used
as a horizontal monitor line for distortion measurements. To produce a
narrow vertical strip on the screen, a unit step pulse is transmitted whose




duration is equal to one picture element and which is displaced for all the
lines by an equal length of time relative to the line synchronizing pulse.
Using the given specifications for the geometrical raster distortion, we
can delineate the tolerance field on the screen within which the monitor line
should remain on the four sides of the screen (left, right, top, and bottom,

Figure 1),
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FIGURE 1. Tolerance field (1) along the edues of the picture
tube ‘creen and the position of the sensars (2) for centering
the monitor lines (3).

The automatic analysis of the line shape is greatly simplified if uniform
standards have been established for the resultant geometrical distortions.
Thus, if the standard tolerance for the total geometrical distortion is 47,
(as in the East German Standard TGL 8838), the allowed line deviations
from the mean position on a screen measuring 384 mm in the horizontal
direction and 305 mm along the vertical (the Soviet-made 47LKI1IB picture
tube) is 384 -0.04 =+ 15.3 mm in the horizontal direction and 305 -0,04 =
+ 12.2 mm along the vertical. The tolerance field, i.e., the total allowed
deviation of a line on the 47LK1B screen, is 30.6 mm horizontally and
24.4 mm vertically.

If the tolerance field is known, the geometrical distortions are
conveniently monitored using a YES— NO photoelectric sensor. This
naturally requires a sufficiently sharp change in photodetector signal when
the monitor line crosses the boundary of the tolerance field (the photo-
detector is suddenly :lluminated or alternatively obscured).

The main advantage of the automatic analysis of the line position within
the tolerance field on the TV screen is that it simultaneously takes account
of all the possible distortions which affect the line geometry (for example,
the curvature of the vertical line when the TV set is supplied by an
asynchronous grid).

The output signal is determined by the inertial properties of the

photodetector. If the detector time constant is 1> 71— where [ is the line
$

scanning frequency, equal to 15,625 Hz, the output signal is independent of
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the raster delineation and depends only on the integral brightness intensity

1
of the screen. If, on the other hand, r<7—, the detector output contains a
s

pulsed signal in which the scan frequency is reflected.

FIGURE 2. Methods of determining the shape
of a white line on a TV screen and its position
within the tolerance field {.

Figure 2 illustrates the different photodetector geometries relative to
the tolerance field on one of the sides of the picture tube. Detectors 2, 3, 4
and 5 define the limits of the tolerance field / (see Figure 2a) and detector 1
centers the monitor line. The light- sensitive area of detector 1 is in the
shape of a narrow slit parallel to the monitor line. The width of the slit
should not exceed its thickness. Automatic line centering is accomplished
by gradual displacement of the vertical line in the horizontal direction or
successive delineationinthe vertical direction until detector 1 delivers a
peak signal. After that no further displacement of the line is attempted. A
NO (reject) signal is obtained when one of the detectors 2, 3, 4 or 5 is
illuminated. The shape and the position of lines on the other sides of the
screen is similarly determined. If the readings of the various detectors
are received separately, the geometrical distortion can be exactly identified
(whether a barrel, a pincushion, a keystone, or other distortion). The
sensitive area of detectors 2, 3, 4 and 5 in the longitudinal direction should
be large enough to ensure that the detector remains illuminated even in
case of maximum displacement of the monitor line. Instead of numerous
detectors along the edges of the tolerance field, the four sides of the screen
can be fitted with the input ends of fiber-optics lightguides, whose output
ends are all connected to a common photoelectric detector, and it is the
signal from this detector that is interpreted as a NO signal.

In Figure 2b the light- sensitive surface of detectors 2 and 3 lies inside
the tolerance field and their longitudinal dimension is /. In this case a NO
signal is produced when the detectors 2 and 3 are obscured. Line centering,
as in the previous case, is done using a maximum signal from detector 1.

Position- sensitive photocells with longitudinal (transverse) photoeffect
can be used for automatic line centering and automatic determination of line
shift on a TV screen /3/.




SPECIFIC FEATURES OF PHOTOCELLS USED IN
PHOTODETECTORS

Photodetectors use three types of photocells: electron vacuum element
(with external photoetfect), photoresistors (with internal photoeffect), and
photogalvanic cells — photodiodes and phototransistors /4/.

Since the maximurn screen brilliance is fairly low (up to 100 nit), the
photocell response is the main parameter which determines its applicability
to automatic distortion control.

b LA

2, B
I / \

I TN
50010 \/ )

| IDNAS!
B0lux 2 A \ \\
o / | N

3
0 3 4

N
g3 & o5 &6 m &® 0 4L,

A3

U g

FIGURE 3. Family of current-voltage FIGURE 4. Photoresponse curve: of the TV screen
characteristics of a photodiode. phosphor (1), a Cds photoresistor (2, and a Cdse
photacesistor (3).

For TV screen brilliance of 100 nit, the illumination of a photocell placed
touching the screen is at most 200 lux.

Figure 3 shows a family of current-voltage characteristics of a photodiode
for various illuminations /4/. For an illumination of 200 lux, the photo-
current is at most 40 — 50 uA, whereas the dark current of the photodiode
is 30 uA, so that the photocurrent is only slightly greater than the dark
current. The photocurrent of phototransistors is larger than that of
photodiodes, but their dark current reaches 300 yA. The illumination
produced by the TV screen is thus insufficient for the use of photodiodes
and phototransistors.

An illumination of 200 lux produces a sufficient excess photocurrent
(compared to the dark current) in CdS and CdSe photoresistors. The
response of the CdSe photoresistors is higher that of CdSphotoresistors.
but their photoresponse curve has a narrow maximum at A = 0.75 u, whereas
the photoresponse of ZdS photoresistors occupies a wider region in the
visible spectrum, where the glow spectrum of the TV screen phosphor lies
(Figure 4). The total response of the CdSe and CdS photoresistors to picture
tube glow is therefore virtually the same.

The main advantages of photoresistors are their small size, low cost,
and long service life. Any number of photoresistors therefore can be
installed for distortion control in different parts of the picture tube screen,
ensuring a light-sensitive surface of required size and shape. The short-
comings of photoresistors include their considerable inertia (the time
constant v is several tens of milliseconds), substantial scatter of parameters,
and variation of the irtegrated response during the service life /5/.




Maximum response is characteristic of photomultiplier tubes; these are
essentially electron-vacuum tubes with external photoeffect and secondary-
emission electron multiplication. They have an excellent time resolution
and a linear photocurrent characteristic. The photoresponse region of most
commercial photomultipliers is fairly wide and in effect coincides with the
emission spectrum of the screen phosphor. TV distortions can be
conveniently monitored using miniature photomultipliers, not larger than
bantam vacuum tubes.

THE EFFECT OF PARASITIC PHOSPHORESCENCE
ON THE MEASUREMENTS OF LINE POSITION ON A TV SCREEN

The accuracy of the automatic distortion control using photodetectors is
determined by the steepness of the characteristic which gives the detector
output signal vs. the position of the bright line on the screen.

The steepness of this characteristic depends on the size and shape of the
reconstituting aperture and on the parasitic phosphorescence of the screen.
The light spot on the receiver screen (the reconstituting aperture) is
circular with a normal distribution of electron density in the beam. The
circle of confusion in the transmission of a black-white boundary line is
approximately equal to the size of the reconstituting aperture, i.e., to the
size of one picture element on the receiving screen, which does not exceed
1 mm.

The steepness of the characteristic is thus highly sensitive to parasitic
excitation of the screen phosphor.

Vacuum

Zone A

FIGURE 5. The effect of parasitic phosphorescence of the
picture tube screen.

Figure 5 shows a cross section through a picture tube screen. Note that
the photodetector 1 attached to the outer surface oftheglass screenreceives
not only the direct light from the phosphorescent element 2 directly opposite
the detector, but also slanting light from screen elements within a circle
of radius R, (zone A).

The radius of the parasitic phosphorescence circle R, is determined by
the thickness of the screen d and the angle of total reflection oy

Ri=dtg oo (1)

1
Aop=arc sin —-.




For glass n =1.54 so that a,,= 41°.

The screen is thicker along the edges than in the middle. The radius of
parasitic phosphoreszence is therefore higher at the screen edges.

The useful part of the light flux emitted by the phosphourescent screen
element, which does not suffer total reflection and leaves the glass, is
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where /. is the light intensity along the normal to the screen.
This equation is valid only when the light flux in glass obeys Lambert's
law, i.e., when the light intensity emitted by the phosphor is

T ph = Iocos a, (4)

where « is the angle between the normal to the screen and the direction of
observation.

For incidence angles a<a,, the air —glass interface reflects 1+ — %, of
the light flux. Therefore, the main factor influencing the light flux density
hitting the photodetector is the loss of luminous energy in the screen glass:
in order to enhance the picture contrast, the glass is colored neutral gray
and transmits about 2 /3 of the normally incident light flux.

The attenuation of light in a scattering medium is described by the
exponential relation

o= (5)

where » is the absorp-ion coefficient; d is the thickness of glass.

F -
If we take g =e¢ =4 we find kd =1.1, i.e., ford=1cm, k=1.1 ecm L

Given k and d, we can calculate the attenuation of light passing from the
outer boundary of the parasitic phosphorescence circle 4 to the outer screen
surface, compared to the normal light flux:

B _ ~k(—d 6
F=¢ ( A (6)

where F; is the light flux traversing a distance d, in glass: F, is the ncrmal
light flux traversing a distance d in glass:

d
h= s For (7)
For o= 41°, d,=1.32 d.
Besides the effect of direct parasitic phosphorescence, there is an
additional contribution from light suffering total reflection (Figure 5). The
radius of the corresponding circle of parasitic phosphorescence Bis




Ro=2dtg ayo=2 R1. (8)

The light rays hitting the photodetector from element 4 traverse the
distance

2
d2=(1+ E‘_’»“f"'toz)d (9)

in glass. For a;o= 41°, de=3.65d.
The attenuation of this light component in glass can be calculated from
the equality

Fa Y -
P (10)

The parametersd, R, ;lz and 23 for Soviet-made picture tubes 47LKIB

and 59LK1B are listed in Table 1.

TABLE 1.

47LK1B 59LK1B
Parameter

center of screen| edge of scteen |center of screen] edge of screen

12.5

10.9

0.113 ’

We see from the table that the attenuation of the direct parasitic
phosphorescence in the screen glass is insignificant compared to the
attenuation of the normal light flux, and they therefore make a substantial
contribution to the photodetector illumination. The light flux suffering
total reflection is attenuation to a much higher degree. Multiple reflections
produce a further attenuation of 8 — 10% compared to the direct light.

Parasitic illumination of the photodetector is also produced by scattered
light associated with screen curvature. The scattered light, however, is at
most 2% of the principal light flux /6/, and it is therefore ignorable.

The parasitic phosphorescence zone can be reduced by several methods.
The simplest approach is to use a narrow slit with light-absorbing walls
cut through the medium 2 between the photodetector 1 and the ocuter screen
surface (Figure 6a). The direct parasitic phosphorescence zone then
shrinks to 2r (instead of 2R;).

The illumination from a glowing surface of finite dimensions is




"B-dS-f(a)-cosa
E=k/j———02———, (11)

where k£ is a coefficient which depends on the system of bright units used;
B is the brightness of a surface element dS; 2« is the angle between the
direction of observation and the normal to the surface: f(a)is the angular
distribution function of the surface brightness: D is the distance between the
luminous surface and the point where the illumination is measured.

When D is increased, the illumination £ markedly decreases, and may
eventually fall below the detector threshold, especially if the screen
brightness is fairly low and the slit is narrow.

1
a ~n/m a

H
12 ) ) /Z 4
\ \
71N t
S / \ t
\ / \ \
\\ !
e 5P e n
222' , 2ri~ 14 3
a) b) o

FIGURE €, Methods for reducing the parasitic phosphorescence.

Better parasitic phosphorescence reduction can be achieved if the slit is
replaced by a light chamber 2 with light absarbing walls and adjustable

apertures (Figure 6b). The chamber should not be more than a few
millimeters deep.
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FIGURE 7. Curves of the relative change in photoresistor current vs.

the displacement of a bright line on the 47LK1B picture tube.

As we have seen above, the light sensitive area of the photodetector
limiting the tolerance field should not exceed 30 mm. A slit of comparable
width does not produce a sharp restriction of the parasitic phosphorescence
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at the slit edges. The effect of parasitic phosphorescence in this case is
reduced with the aid of lens 2, which projects a focused image from the
phosphor plane 3 to the plane a—a’ coinciding with the light sensitive area

of the detector 1 (Figure 6c}. The mask 4 on the picture tube screen blocks
off spurious light. In this case, however, the detector illumination is
greatly reduced.

Figure 7 shows the experimental curves of the change in photoresistor
current as a function of the displacement of a bright line on the picture tube
screen (middle of screen). The line thickness is equal to one picture
element. If the photoresistor directly touches the picture tube without any
slit (curve 1), the parasitic phosphorescence circle is too big to permit
exact pinpointing of the line. A 1 mm slit (curve 2) or a short-focus lens
(f =4 mm) with a slit of the same width (curve 3) substantially reduce the
parasitic phosphorescence circle, and the line position can be determined
to within + (1 — 2) mm.

We see from Figure 7 that the use of a lens with a narrow slit does not
improve the results, since the steepness of curve 3 is almost the same as
the steepness of curve 2, whereas the absolute value of the photoresistor
current is substantially less than for a slit without a focusing lens.

_—_/_

_th’ﬁd %2 -0 -8 -6 4 20 2 4

mm

FIGURE 8. Curves of the change in photoresistor current vs. the
displacement of the bright line on the 47LK1B picture tube for
various photoresistor specimens.

Characteristic 1 does not show any dip between zones A and B, since
different parts of the bright line are at different distances from the
photoresistor, which after all responds to the total light flux.

Because of the high inertia of the photoresistors, the bright line was
moved along the screen ata speed of no morethan1—2 mm/sec. Moreover,
comparison of the individual photodetectors mounted infront of the screen
revealed a considerable scatter of peak current values and parasitic
illumination current {Figure 8).

The application of high-response photomultipliers makes it possible to
mount the detector farther from the screen. We can thus choose the
optimal distance when the error due to parasitic phosphorescence does not
exceed a certain chosen value.




FIGURE v, Oscillograms of the photomultiplier output signal.

Figure 9 shows oscillograms of photomultiplier output signal obtained
with the detector illuminated successively by the lines of a standard raster
on the 57TLK1B screen through a 1 mm wide slit and a focusing lens with
[ =35 mm. If the lens is set at a distance of at least 200 mm from the
screen, the photomultiplier output shows one prominent pulse {(Figure 9a).
The duration of the leading edge does not exceed 0.1 — 0.2 usec, and the
longer trailing edge is determined by screen persistence. If the lens is
close to the screen, the parasitic phosphorescence circle is larger and the
number of pulses increases (Figure 9b), and it is therefore difficult to
decide which of the pulses corresponds to the actual line position.

CONCLUSIONS

1. Automatic analysis of line shape and position on a picture tube screen
with photodetectors provides complete information on total raster
distortions associared with geometric distortions and other factors.

2. Photoresistors and photomultipliers are suitable detectors for
automatic distortion analysis. Because of the high inertia of photoresistors,
however, the analysis can be carried out only if the lines are moved very
slowly over the screen.

3. The accuracy of line position measurements can be improved by
reducing the parasitic phosphorescence circle.
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THYRISTOR SWITCHING CIRCUIT FOR A PULSED
CONTROL SYSTEM OF D.C. ELECTRIC MOTORS

A method is developed for the calculation of transients in the thyristor switching circuit of the pulsed
control svstem of due, electric traction mators,  Rewlts of Taboratory tests are given,

The speeds of traction units supplied by a contact line are currently
controlled by a pulse-adjustable resistance, which smoothly varies the
resistance in the motor circuit between wide limits ;1, 2/.

Inthese systems (Figure 1), a power thyristor T1 is connected in
parallel to the star:ing rheostat. The pulse duty cycle of the thyristor
current (equal to the pulse duration divided by the period of oscillation)
varies from 0 to 1 during the starting or the braking phase of the motor,
so that the stage resistance falls from its maximum value to zero.

__":_1

T1

T} I

FIGURE 1, Functional diagram of a pulse control svstem:

R —rhenstat stzge resistance, T1— power thyristor, D — mator,

The main element monitoring the pulse mode of the power thyristor is
the switching circuit (Figure 2) comprising an auxiliary thyristor T2 and
a quenching capacitor C (r is the charging resistance, T1 is the power
thyristor, T2 is the auxiliary thyristor, R is the starting rheostat resis-
tance, T3 is the recharge thyristor, L, is the inductance of the leads and
the transducer, DL is the delay unit, L; is the inductance of the recharge
circuit, RT is the rectifier, D is the motor, Le is the excitation winding).

The capacitor C is supplied either from an external source (Figure 2a)
or by additional feedback from the traction motors (Figure 2b).

The operating cyc.e of the switching circuit can be divided into four

successive phases.
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FIGURE 2, Quenching capacitor charging circuit:

(a) nsing an external source, (b) charging by motor current.

Phase 1begins when the auxiliary thyristor T2 is turned on. The
capacitor C charged to a voltage Uen (the polarity of this voltage is shown
in Figure 3a) is discharged through the power thyristor T1 into the
serially connected inductance of the delay unit transducer coil and the lead
inductances L:. The current through thyristor T1 falls to zero, and then
reverses its direction, again dropping to zero after a time tTl(Figure 4).

After the recovery time of the thyristor, d.c. bias is applied to T1.

In Figure 4 fp is the time for the thyristor current to fall to zero, fy,is
the recovery time of the auxiliary thyristor; is is the rheostat current;
irgls the auxiliary thyristor current, ir, is the power thyristor current,
Ui is the voltage across the power thyristor, Uc¢ is the voltage across the
capacitor.

Phase 2: when the power thyristor T1 is switched off, the capacitor
discharges through the starting rheostat. As a result overvoltage is set
up, which is applied to the power thyristor in the back direction. This
phase terminates when the voltage on the quenching capacitor drops to
zero (Figure 3b).
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FIGURZI 3, Current distribution in the circuit for various
phases of the cycle,

Phase 3 begins when the capacitor is recharged by the motor current.
Since the polarity of the capacitor voltage is reversed, all the previously
cut off diodes of the rectifier bridge are now conducting and the traction
motor current flows through these diodes into the charging resistance.
Transformer overlapping thus begins, since current flows through all the
four diodes of the bridge. The inductance of the rheostat stage produces
oscillations in the auxiliary thyristor current, which is necessary to
ensure its rapid cutoff. After the recovery time irg, the auxiliary
thyristor T2 is cut off (Figure 4).

Phase 4. Transformer overlapping may continue., After that, in the
circuit shown in Figure 2a, the capacitor is charged by transformer Ty
through the rectifier RT. In the circuit shown in Figure 2b, the transients
occur in the following sequence. The signal from the rising edge of the
auxiliary thyristor current pulse is differentiated, delayed in the delay
unit DL for the duration of the cutoff time of the auxiliary thyristor T2, and
is then delivered to the control electrode of the thyristor T3. T3 becomes
conducting, recharging the capacitor through the inductance L; to a voltage
which cuts off the thyristor T1. After that the capacitor charge is built up
to the voltage Usyn from the transformer.
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FIGURE 4, Diagram of currents and voltages in
in the switching circuit,

Our aim is to calculate the transients during the phases 1,2, and 3 of
the cycle.

BASIC EQUATIONS OF THE SWITCHING CIRCUIT

The operation of the switching circuit is analyzed under the following
assumptions:

1) the traction motor current remains constant during the transients;

2) the inductance of the starting rheostat and its active resistance are
constant;

3) the active resistance of the leads is zero;

4) the resistance of the cutoff thyristors is infinite, and the resistance
of the conducting thyristors is zero;

5) the switching-on time of thyristors is ignored;

6) back current flows through the thyristor during the whole of the
recovery time.
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FPhase 1. The operatorial Kirchhoff equation of the circuit is

iT'_‘ {..

pC';'nL:l'Tih T =0 (1)

where /.. is the capacitor voltage at the time when the auxiliary thyristor
is switchel on;
ir,is the auxiliary thyristor current.
I'he solution of this equation has the form

f Ucm
T e L2

sinwef. Qg)

wvhere .y is the radian frequency of the natural oscillations of the circuit;
L. is the inductance of the leads and the DL transducer (Figure 3).
The thyristor switching off time ¢ is the sum of the time f{ the power
thyristor current takes to fall to zero plus the recovery time tpq(Figure 5).
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FIGURE 5, Tustrating the power thyristar cutoff
canlditions,

The time ¢, is obtained from relation (2) by setting ip,= iy for t=1,
where i, is the motor current:
l’z wo LQ

! .
fo= — arc sin
(U7} rm




The switching~off time of the power thyristor is then

] . hag L
t=t . 2 (g L2
T1+ o are sin ——5—=. (3)

ocm

Inserting (3) in (2), we obtain the maximum current through the auxiliary
thyristor (Figure 4):

ipgm=1i2(cos wo tpy+¥a?—1-sin wo try), (4)

Uen
igwo Le”

The maximum current through the power thyristor at the end of the
phase is

where a=

ipym=iz~—irom=i2(] —cos wo tr1—Yai—1 - sin wo f11). (5)

We see from this expression that the negative current through the
thyristor increases with increasing coefficient ¢, i.e., for given L, and C,
with increasing initial voltage on the quenching capacitor Ue,. On the
other hand, a larger back current pulse increases the switching-off
thyristor losses /3/, which is highly undesirable. Therefore U, should not
be made too large and should ensure reliable cutoff of the power thyristor at th
the largest allowed currents in the motor circuit.

Let us calculate the minimum capacitor voltage needed to ensure reliable
thyristor cutoff.

The condition of power thyristor cutoff is written in the form (Figure 5)

I
10+f’r1\m

’

1 1 n
— arc sin — tp S e
o 2 tTms g

whence for the capacitor voltage
Ucm? ‘—"12_“—‘ .
|/ £ CoSs o
Z, T1

The capacitor voltage at the end of Phase 1 is

-t T1 .
Uso=Uem— ¢ fiT2dt=Ucm_—(%c— (a—Ya?—1-cos wotpy+sinwo tpy).  (8)
[

Phase 2. The equations of currents and voltages in operational form
are now

I/ L,
ﬁ— =ip+ite;

. . . . U. i
IR(R+pL1) — 1R0L1=pL2LT‘2—lT20L2_ ?2—{—'7;%2,




where R is the stage resistance;
(g is the stage current;
L, is the stage inductance.
Taking ip-=0 and ty5,=(:, we obtain the solution of the set of equations
for the current through the auxiliary thyristor:

! on '_, —_ . e h
iT,<=£‘~:£.'_J;E T ¥ 3N w i+ iem {m&»t—- 3~smwt)‘ L10)
- @ L w
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where a= DI o= | ’J;“‘TC‘ tor I >a? and
L:Ll*Lv
Since usually L:.-L,,
% . I
= o= a2
2L 1 rc*®
The auxiliary thyristor current is thus
: Ueg . 0.AR sinw £ l
e i JR-4. g . .
ita=e {wl—i blﬂu)lvlz[ ol cos'nt]’ (11)
Fhe current through the starting resistance is
L 7, . [ CAR sinw ¢ -
Ip=l—lpo=—" i[col €7 et sin ul—-zy{[-———)[—?m—sg(-)— +C0os o t]t’ 2t } (12)

To choose the powe: thyristor parameters, we require the maximum
back voltage applied to the cutoff diode. This voltage can be obtained from
equation (8} if we ignore the drop of voltage across the inductance L,, i.e.,
take

l—":‘m = L’l_‘O' (\ 13 )

Phase 3. The equations of currents and voltages in this phase in
operatorial form are

b i
p =iT=tir
fpo={+i3

ir(R+pLy) —ipel=

i

pC

={3r,

i

pC

-

iT20'Latpirals

(14)

where i;,,is the initial current through the auxiliary thyristor, determined
by equation (11) at the end of phase 2;

i) is the capacisor current;
is is the resistor current.
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The solution of equations (14) for the transform of the capacitor current,
taking ire=0 and ignoring the inductance L,, takes the form

R iToo'La+icl, P
+ 7 ' T3
pt+p (-é +

. 153

ll=__
L 1 i

’ ”2“’(”5 + 2+ e

The roots of the characteristic equation are

_ {1 R
P 2= (2—’_0— + -gl-:) +

1 R\2 R+r 1
(‘27?+’2T,) Tn
we have an oscillatory process; otherwise the process is aperiodic.

To quench the auxiliary thyristor, the first condition must be satisfied.
Therefore, in what follows we will only consider the oscillatory mode of
the circuit.

We set

Let us find the critical value of the charging resistance r, which just
allows the oscillatory mode. This critical resistance is obtained from
the equality

and we should have r,>r, so that

rp>r=

where ng= I/_l_&l .

Figure 6 plots the lines ry=f(R) for r, = 3— 150hm which correspond to
the actual values of parameters in such circuits. We see from these lines
that the charging resistance ensuring oscillatory operating conditions is
of the same order of magnitude as the total stage resistance, and lower
resistances have little effect on the transients.

The expression for the capacitor current is

f=ip—R e~ B sin o, £+

ipgblatisky gt o,
(DILI L[

x[cosmt~ lsin(.),t .
oy
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FIGURE u. The plot of r =f(R) with ry as the parameter.

Since iro0 L,<&€ Ly, we have

et R _ 8
[y =ize [(m\Lx ‘) mw.t-!—cosw.t]

The charging circuit resistance is
: i T .
13=m{(w1_ﬁD)e 8 smmlt—(Dm,+ﬁ)cosu)lte pt +Dw1+ﬁ},

where D-——B-——_—B-.
ILI ]

The auxiliary thyristor current is

R . . R
1T2=i1+t3=i3{smm, t»e"”[D+ cr(m;"’-}-ﬁ?)] +R+r coswy - e-ﬁt+R+r }

The starting rheostat current is

L R . -D
“=12—[T2=12{ I=sino ¢ [D+ cr‘:c:n’-f-gz)]— R:-r

The capacitor voltage at the end of phase 3 is

Lo-8t __R |
coswy f-e R+r}

! 2{8-53(0), DB)sinw, 8 —e=%® (B+Dw)cosw1 6+B+Den},

U= = j idt= 652
(20)

where 6 is the duration of he "'on'" state of the auxiliary thyristor.
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To choose the thyristor switching frequency in pulsed control systems,
we require the parameter §, since it limits the capacitor charging time to
the polarity which is needed to cut off the power thyristor.

Ignoring the recovery time tpgofthe auxiliary thyristor, which is
immeasurably small that the duration of the "'on'' state, and neglecting
the effect of the charging circuit and the duration of phase 1, we obtain
under our assumptions for the duration of the "on'' state of the auxiliary
thyristor

T
b= 5 —ta, (21)

where f; is a time which depends on the initial circuit conditions;
T= 27
(O]
The time # is found from (11) for ipg= 0:
1 .
fp= — arcsin L =
@

1/((%1:’—1 +iz 0(;55)2 +ig? '

Inserting ¢ from (22) and T from (21), we thus get

(23)

1 . iz
8= -——[ T —arc sin —=—

© Ueo .o.sR)2 i ]
V( w Ly ‘i wl +h

Analysis of this expression shows that the duration of the "'on" state of
the auxiliary thyristor decreases as the traction motor current increases
for low loads and is almost independent of the motor current in the limiting
mode, when the amplitude of the auxiliary thyristor current is only slightly
greater than the motor current,

i

RESULTS OF TESTS

The pulsed control system was tested using a 200kW URT-100 traction
motor, a braking unit, a thyristor unit with VKDU-100-4B and UPVK-5-3B
thyristors, a transformer supplying the switching circuit and control
circuits.

Experimental tests were carried out at frequencies of 100 and 400 kHz.
Both the switching circuit parameters (the quenching capacitance, the
inductances L, and Ls;, the starting rheostat resistance R) and the traction
motor current were changed. The traction motor current varied from 0 to
240 amp.

Current and voltage oscillograms were taken for the various component
elements of the switching circuits, and the minimum permissible capacitor
voltage was determined needed to ensure reliable cutoff of the power
thyristor.




Figure 7 is an osc.llogram of the current through the auxiliary thyristor
of the switching circuit. The tests essentially confirm the principal
theoretical conclusions of the study.

{2

@ 7 ¢

FIGURE 7. Qscillogram ~f the current through the auniliaey
thyristor,

CONCLUSIONS

The theoretical analysis of the switching circuit of a pulsed control
system d.c. traction motors led to a procedure for the calculation of the
transients, which gives the instantaneous and the amplitude values of the
currents and voltages in the circuit. These values can be used to design
and select the vatious component elements of the unit.

Experimental tests bear out the principal results of the work.
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AUTOMATIC COMPENSATION CIRCUIT FOR SLOW-
SWEEP CONTROL OF A STROBOSCOPIC OSCILLOGRAPH

I'his article deals with the operating principle and functional circuit of the device. The advantages of
two-way monitoring of the input signal and its use for slow=sweep control of a stroboscopic oscillograph in
order to reduce the time required to analyze the signal are explained.

The use of an automatic compensation circuit in a stroboscopic conver -
ter considerably improves the performance of a stroboscopic oscillograph:
it broadens the pass band, eliminates nonlinear distortion and increases
the sensitivity.

The lack of an automatic compensation circuit results in an increase in
the analysis time. In automatic compensation circuits with discharge and
one-way monitoring of the input signal the number of strobe pulses in the
pulse train is determined by the charge of the storage capacitor starting
from some initial level until breakdown, corresponding to the compensation
of the input signal at a given readoff point. Particularly ineffective is the
use of strobe pulses in the form of a pulse train with regard to the readoff
points of the flat portions of the signal. If instead of a breakdown in the
voltage of the storage capacitor after each reading in one-way monitoring
circuits we use a steady, slow discharge of the capacitor, the analysis
time for reading off the points of the trailing edge is sharply increased,
since the compensation level is reached in accordance with an exponential
law, whereby the time constant of the storage capacitor discharge is large.
The latter cannot be substantially reduced, because the adjustment error
is increased and the discharge of the storage capacitor is inhibited upon
reading off the leading edge and the flat portions of the signals.

Below we shall discuss how an automatic compensation circuit is effected
by employing two-way monitoring of the signal in question. This type of
voltage control at the converter output enables us to read both the decay and
the rise of the observed transient process, considerably reducing the time
of analysis. Reduction of the analysis time is achieved by reducing the
number of strobe pulses in the pulse train with respect to a given readoff
point. The required number of strobe pulses in the pulse train is deter-
mined by the difference between the voltage at a given readoff point and
preceeding readoff points. If by means of a compensating voltage a level is
attained, correspondingtothe voltage at a given readoff point, the automatic
compensation circuit generates a slow-sweep control signal, effecting a
shift in the strobe pulse along the readoff interval, i.e., a jump to the
next readoff point.




Figure 1 gives the block diagram of the automatic compensation device
for the slow-sweep control of a stroboscopic oscillograph: 1 — converter;
2 — strobe-pulse gensrator (SPG); 3 — storage capacitor with repeater;

4 — amplifier-expander; 5 and 6 — charging and discharge switches of
the capacitor; 7 and 8 — driven relaxation oscillators; 9 — logic circuit;
10 — circuit controlled by electronic switches 5 and 6; 11 — monitoring
amplifier; 12 — slow-sweep generator.

I——»y

6 9 2

Signal

— | Ho -7 |7 1<

SPG trigger pulse

FIGURE 1. Block diagram of an automatic compensator for the slow-~sweep con-
trol of a strobosconic oscillograph.

The test version of the functional circuit, correspoding to the block
diagram in Figure 1, is given in Figure 2.

-t
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3PG trigger 7
pulsé 2 Ry
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" —3u[ln, Lo,
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-

FIGURE 2. Functional circuir,

The stroboscopic converter consists of a widely known circuit in which
the strobe pulses are triggered at the right time by actuating a semi-
conductor diode. If the circuit does not effect compensation, then diode D,
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opens upon each strobe pulse. In a compensating circuit (as is the case
here) diode D, triggers strobe pulses only when the sum of the signal
voltage at a given readoff point and the voltage of the strobe pulses exceeds
the voltage at N. The relaxation oscillators correspond to a delayed
multivibrator circuit consisting of a tunnel diode and an inductance.
Relaxation oscillator 7 triggers a discharge by means of the strobe pulse
when the diode D, is open. Relaxation oscillator 8 triggers a discharge

for each cycle of the strobe pulses from the strobe-pulse generator. The
duration of the pulse, shaped by relaxation operator 7, is twice as long as
that of the output pulse of relaxation oscillator 8. The square pulses shaped
by relaxation oscillators 7 and 8 are intensified via the current by the
repeaters at transistors 7, and Ts, respectively. The emitters of 7, and T
are both connected to the winding W; of the transformer 7,. Thus, we must
consider,the two possible cases for which the relaxation oscillators are
triggered:

1) the strobe pulse triggers relaxation oscillator 8, but not relaxation
oscillator 7;

2) the strobe pulse triggers both relaxation oscillators.

In the first case a current flows through the winding W, from the output
of the repeater at T, to the emitter of 75. The duration of the current pulse
is equal to that of the output pulse of relaxation oscillator 8. In the second
case, when a negative voltage drop occurs at the emitters of 7, and 75, no
current flows through W3. The current pulse is generated after completion
of the output pulse of relaxation oscillator 8, since the duration of the pulse
of relaxation oscillator 7 was selected twice as large as that of relaxation
oscillator 8. The current pulse in the second case possesses an opposite
polarity of the same duration as the trigger pulse of the relaxation
oscillators in the first case.

This suffices to actuate respectively switches 5 and 6 by means of
windings W, and W; of the transformer T,, since in the case of an inadequate
compensation voltage at N charging of capacitor C, takes place, while in
the case of overcompensation a discharge occurs. Resistors Rs and R; are
monitored. The monitor charge (or discharge) of the storage capacitor
C, determines the quality of control. An increase in the monitor charge
enhances the circuit response speed, but causes larger errors in the
control.

The gquality of the test of the follow-up system is characterized by the
order in which switches 5 and 6 are actuated: if the automatic compensation
system does to succeed to follow the variations of the studied signal, then
only one of the switches {5 or 6) is actuated; when the monitoring is good,
switches 5 and 6 are successively actuated. Circuit 10, consisting of
transistors Ts and T;, charges and discharges capacitor C, upon the arrival
of pulses from the collectors of T, and T; (switches 5 and 6). The output
signals of block 10 are subsequently differentiated and arrive at the input
of the monitoring amplifier, consisting of transistor Ts. The slow-sweep
generator, consisting of transistors T, T and T, and the tunnel diode
TD,;, was adjusted to an extremely low sweep frequency when no signals
arrived at the base of Ty from 11. If the follow-up system succeeds in
monitoring the studied signal, then switches 5 and 6 are successively
actuated and signals from the monitoring amplifier 11 arrive at the base
of Ty, leading to an increase in the flow of charge in capacitor C; of the




slow-sweep generator; a step voltage at C;, generated by the signal from
biock 11, corresponds to a jump to tne next readoff point.

The above version of the functional circuit indicates the possibility of
employing two-way monitoring for the slow-sweep control of a strobo-
scopic oscillograph with the aim of reducing the signal analysis time. This
type of control is effected by alternating the order of charging and
discharging the storage capacitor of the automatic compensation circuit
which is determined by the speed with which the studied signal varies.
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D . K Zibin'
SYNTHESIS OF MULTISTAGE TRIGGERS

The synthesis of multistable triggers from simpler components using the multistage approach is described.
Examples of functional and circuit diagrams are shown.

Triggers are the commonest component units in digital computers and
sampled-data control systems. The recent advances in solid-state
electronics led to the introduction of highly effective multistable triggers,
which are gradually replacing the usual flip-flops. The general theory of
design of multistable triggers is presented in /1/. We applied this theory
to the synthesis of multistable triggers from simpler components by the
multistage approach.

PROCEDURE

Each stage of a normal solid-state trigger contains an inverter

amplifier, whose colilector circuit is the output of the stage and whose
base circuit is the input. Under certain conditions, these stages will form
a trigger, provided that their inputs and outputs are cross-linked. The

ik

"amplifier'' concept in these devices is to be considered with some
reservation., This stage alternately functions as a made switch, an
amplifier, and a broken switch during one complete cycle. The amplifying
properties of this component are not manifested during the first and the
third phase of the cycle, so that the multistable trigger can use some
different components capable of performing the same three functions, e.g.,
triggers. In this case the various outputs of the trigger should be con-
nected through an OR circuit with the common output of the stage, and the
common input of the entire stage should be connected to substage inputs
(Figure 1). Thus, if the transistor T, is cut off, the transistors T, Ts, and
7, are conducting, since they recieve the base current from the collector
circuit of the cutoff transistor 7,. The output voltages of this trigger are
shown in Figure 2.

The four transistors can of course be analogously replaced with bistable
triggers, etc. (Figure 3). Therefore the resulting multistable triggers
can be classified as multistage circuits. In accordance with the general
theory of multistable triggers /1/, multistage triggers can be used to
simulate three-, four-, five-bit and even more complex configurations
(Figure 4).




FIGIURE 1, A twa-uwage trigeer,

FIGURE 2, The »sugmt vol- FIGURE 3, Functional dvagram of a three-
Tage: of a two-:tase rrigger, stage rrigeer,

However, as the number of bits is increased, the stability parameters
deteriorate (the ouput voltage and the permissible load current decrease).
In ordinary multistable triggers this shortcoming is eliminated by intro-

ducing a second backup transistor in each bit stage. In multistage triggers
fewer amplifying transistors are required. For example, the trigger
shown in Figure 4a requires only two amplifying transistors, the circuit

in Figure 4b only three, and so on.

FIGUIE 4. Functional diagrams of some two-stage trigeers.,




The multistage triggers considered above are regarded as elementary
devices in Pavlenko's classification /2/, since they cannot be split into
constituent components without breaking at least several base-collector
linkages. It is nevertheless highly important to understand their building
blocks. Clearly, any multistable trigger can be built up from bi- or
tristable triggers. In this case, the maximum possible number of states
will be greater than in an analogous conventional trigger. This is so
because the operating conditions of the base circuit of the cutoff transistors
are improved in the multistage trigger: there are fewer base-collector
linkage elements connected to the transistor base. Particularly simple and
attractive for many-bit configurations are triggers with diode base-collector
linkages.
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G.S.Goltvinskaya, D.K.Zibin’

AN ASSEMBLY OF TRANSISTORIZED
MULTIVIBRATOR CIRCUITS

Vhe Jdesign of astahle. monostable. and bistable multivibrator circuit: using p-type and n-tupe planar
tragsistors (s deswcribed,  The advantave~ and characteri-tic features of the-e Jdevice. are Jdicensed.  Vari:
sopleation: are considered.

Multivibrators using two planar transistors are widely known. Ina
certain sense these devices are direct analogs of the corresponding vacuum
tube circuits. The application of transistors does not introduce any new
element into their functional properties, so that the peculiar advantages and
features of transistors are not always fully utilized. In a nuraber of cases,
better performance can be achieved by redesigning the circuit so as to
make full use of the specific transistor characteristics. [n this respect,
so-called complementary circuits using p-type and n-type transistors are
of certain interest 1/, Certain devices of this type have been described
in the literature, but these descriptions unfortunately do not link up with
the common circuit campo.ents. The ever growing number of individual
devices and lack of geveralizing analysis of the entire class creates a quite
misleading and unnecessary impression of extreme complexity and
obstructs the selection of optimum aitenatives for new equipment.

In this paper we will try to describe the general procedure for circuit
design using p-type and n-type transistors. Following this procedure, the
authors built and tested a number of basic devices (an astable multivibrator,
a delayved multivibrator, univibrator, multivibrator with capacitive emitter
coupling, multivibrator with emitter timing capacitor, symmetric trigger,
and trigger with emitter coupling), for most of which this approach was
entirely without precedent. Space limitations, however, do not permit
discussing the circuit diagrams of these individual devices.

PROGCLEDURE

Simple change in each basic circuit will permit replacing a p-type
transistor with an n-type one and vice versa (Figure 1). In the modified
circuit, as in the original device, the transistors,are connected in
parallel to the source. The main difference between these complementary
circuits is that in the modified circuit both transistors are cut off or made
conducting always simultaneously. Because of this curious property, we




can proceed to design a number of standard circuits using transistors
connected in series. For example, if we connect the collector resistances
in series, the result is the circuit
-Eo -E, shown in Figure 2a. Figure 2b shows
the emitters connected in series.
Another possibility is to connect the
power source in an asymmetric fashion,
which again gives a different circuit
(Figure 2c¢). In other words, the
transistors, the collector resistances,
and the source give a closed series
circuit. The source can be positioned
FIGURE 1. The multivibrator circuit, anywhere in this circuit. The control
circuits of the individual transistors
were not changed, and the different
circuits therefore function in the usual manner.

All the circuits shown in Figure 2 are thus modifications ofthe original
circuit, although they look quite different. They are all symmetric about
the contact points of the emitters or the collector resistances. I'he output
voltage, however, is collected asymmetrically relative to the common
lead (see Figure 2c, for instance), and this accounts for the superficial
differences between the different circuits. The functional analogy remains
valid, however, since the internal processes in a system are independent of
the particular frame of reference used.

_EC
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FIGURE 2, Multivibrator with transistors in a series.

in the above circuits both transistors have common-emitter circuits.
They are free from any (a.c.) emitter coupling. For example, in the
circuit of Figure 2b the emitters can be connected to the midpoint of the
power source. This will not make any substantial difference to circuit
operation. The absence of emitter coupling permits designing a number
of circuits with several sources, i.e., separate source for each transistor.
Modifications of other circuits can be obtained along the same lines.
For example, Figure 3a shows a circuit with a single capacitive and a
single resistive base-collector coupling, developed from an ordinary delayed




multivibrator. Connecting the emitters (2—3) or the collectors (1—4) in
series, we obtain the modifications b and ¢. Circuit b can be further
modified by omitting one of the collector resistances, as in Figures 2b
and 2c.

3 +

FIGURE i3, Multivibrator with capacitive and resistive
base-collector coupling.

Unlike the ordinary delayed multivibrator, this circuit develops sus-
tained oscillations. If the timing resistance is disconnected from the
collector and connected to the source, a waiting mode is generated.

Figure 4 shows a trigger circuit and its modifications.

5

FIGURE 4. Trigger.

Comparison of the circuits from different groups clearly brings out both
the common and the distinctive features. For example, the atable
multivibrators (Figures 1, 2) are characterized by two capacitive base-
collector couplings. In delayed multivibrators, one of the capacitive
couplings has been exchanged for a resistive coupling. Introduction of
direct emitter coupling will eliminate one of the base-collector couplings
altogether.

Thus, knowing the basic circuits and having understood the method
whereby the different modifications are generated, we can easily find our
way through the entire maze of modified multivibrator circuits.

ADVANTAGES AND CHARACTERISTIC FEATURES

Pulsed devices using p-type and n-type transistors have a number
of distinct advantages. Their power requirements are minimum, a
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great advantage in equipment which is in waiting mode for most of the
time and functions only briefly.

Multivibrators of this type will generate pulses of very high duty factor.
In some cases they will replace blocking oscillators, which are much more
difficult to manufacture technologically. These circuits are moreover free
from any spurious oscillations and pulse distortion.

Series arrangement of transistors in a symmetric circuit halves the
voltage across each transistor. This is highly advantageous for increasing
the source voltage.

In many cases only one of the outputs of a conventional symmetric
circuit is actually used. If this is the case, a better policy is to use a
modified circuit with an asymmetric source. The device then is markedly
simplified, for example, one of the RC circuits is eliminated.

The complementary circuits also have a number of distinctive features.

Hard self-excitation may arise in conventional multivibrators with
negative bias (Figure la, for example). This is so because the base
resistance leads to saturation, and the transistor then behaves as a passive
element. The corresponding equilibrium is therefore stable. Once
triggered from the outside, however, the multibibrator will function
normally.

The situation is different in complementary circuits. During each pulse,
both transistors conduct. The multivibrator therefore cannot develop
sustained oscillations, if the transistors are saturated. This shortcoming
is readily eliminated, however. It suffices to connect the timing base
resistors to the collector of the same transistor. Then, as soon as the
capacitor discharges, the transistor is inevitably desaturated, and the
miltivibrator ensures reliable pulse generation (Figure 1b).

Rapid discharge of the timing capacitors through conducting transistors

generates very short pulses. In these cases the discharge current should
be limited to permissible level by special additional resistors.

The significance of the complementary circuits is not restricted to their
immediate benefits. They apparently will be used in the development of a
number of new pulse devices.
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A UNIVERSAL MULT/STABLE DEVICE

A tiew tragsitoe mltstable trivger ciccuit ~ deweeibed, It functymal dragram s shewn to cover a wile
ranve of particnlar multistable device:. T[he zeneral funeri nal duagram. called 2 universal multistahle

Jevice s analhzed,

In some transistor multistable triggers the stable state is fixed by
potential coupling using resistors and diodes between the transistors.
Such circuits are descrioed in the literature 1—6-. Their application
in complex circuits reduces the number of transistors and lowers the
power requirements compared to those in analogous circuits using
conventional triggers.

However, the existing multistable triggers have a number of short-
comings which limit their large-scale use. The main advantages are the
following:

1} the external load can be controlled between narrow limits only,
since each transistor has only one collector output. In other words,
multistable triggers are not versatile enough as far as the logic of complex
circuits is concerned;

2} the parameters of the constituent elements are expected to meet
exacting requirements, so that hand-picked transistors are needed and the
circuit demands painstaking tuning;

3) the operating ccnditions of the transistors are set with an eye to the
ultimate aim, i.e., attaining a stable state, but on account of the exacting
requirements the conditions cannot be freely adjusted in order to achieve
optimum reliability of circuit operation;

4} the number of stages cannot exceed five (see /2/, p.142), which is
too few to fully utilize the load potential of the transistors.

We will describe a multistable trigger in which these shortcomings
have been largely eliminated (Figure 1). We will briefly consider the
essential features of thz circuit, and also generalize the trigger design
to a whole range of multistable triggers which differ in one of two
individual features.

The corresponding generalized functional diagram (Figure 2) will be
called a universal multistable device (UMD). We will analyze the UMD
in order to establish the common properties of the entire class of
multistable devices.
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I. CHARACTERISTIC FEATURES OF THE MULTISTARBLE
TRIGGER CIRCUIT

Consider the circuit in Figure 1, which represents a transistor multi-
stable circuit. Each stage contains one switched transistor and has two
outputs to which load can be connected.
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FIGURE 1, Circuit diagram of a multistable transistor.

The output Out. is connected to the collector, and the second output
Outy, to the base circuit.

A stabilitron is inserted between the transistor base and Out,. The
stabilitron threshold voltage is chosen so that it firmly cuts off the diode
in the load circuit. If the stabilitron is conducting, base current flows and
the transistor conducts. The resulting drop of voltage across the stabilitron
cuts off Outy,.

If the stabilitron is cut off, the transistor is cut off by the bias U.

Then Out. is cut off, and the load current from Out, flows through the
potential coupling diode to a bus which is momentarily earthed by the tran-
sistor conducting at that instant. The two outputs Out, and Outy, of each
stage are thus always in cpposite states: when one conducts load current,
the other is cut off, and vice versa.

The introduction of a threshold element (stabilitron) is a distinctive
feature of the circuit being considered: it expanded the logic potential of
the multistable trigger by providing additional outputs.

The potential coupling between the transistors (Figure 1) is effected by
means of diodes and common bars 1, 2, n so that when one of the transistors




conducts, all the other transistors remain cut off. The pulse coupling
between the stages in the circuit is sequential, i.e., the output of the first
stage lp—» is connected with 2,-n, and so on. This arrangement can be
cdescirbed as a multistable trigger with sequential shift of the conducting
state.

Let us buildup the functional diagram of the trigger following the
principal units outlined in Figure 1.
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FIGURE 2. A general functivnat Jdiagram of a universal mnliistable device,

The functional diagram is shown in Figure 2. The stage outputs 1,_.,
lp—¢,..., Ap—phap—c can be connected in any other order different from
that shownin Figure 1. The potential coupling diodes can also be linked
by a different configuration. The functional diagram in Figure 2 is there-
fore a general prototyose of multistable circuits, and we will call it a
universal multistable device (UMD). The circuit diagram in Figure 1 is
one of the possible versions of a UMD.

II. ANALYSIS OF THE UMD FUNCTIONAL DIAGRANM

The UMD (Figure 2) is made up of stages 1,2,3,..., n with two kinds
of coupling between them:

a) potential coupling {(block 1);

b} pulse coupling (block 2).

Each stage comprises one transistor, one resistor, a diode, and a
stabilitron; it has two outputs to which load is connected:

Out,' and Outy', Out."” and Outy”, ..., Out.n and Outn.




The two inputs Out, and Out, are always maintained in opposite states.

Block 1 comprises one or several connected diode matrices, which
determine the stable state of the UMD. Block 2 includes capacitors and
resistors responsible for the pulse coupling of the stages. Block 3 is a
transistor circuit which controls the UMD using the potential coupling
lines.

In what follows we will only consider the state of Out,. With regard to
Out, , the entire reasoning is simply reversed, since Out.and Outy, are
always of opposite polarities.

We introduce the following notation:

Out, . and Out,, . — the stage outputs which conduct the load current

are assigned the code 0;

— the stage outputs which are cut off to load current

are assigned the code 1.

We can consider various UMD versions with different combinations of
conducting and cutoff outputs Out. (Table 1).

Out,. _.and Outy, _.,

T ABLE 1.

UMD stage

UNID version 3

Rearranging the ones and the zeros in the intermediate rows of the table,
except the 1st and the K-th row, may produce further UMD versions
(e.g., the 2nd row can be taken from Table 2).

T ABLE 2.

UMD stage

UMD version 5




Note that not all the combinations are feasible for a given number n of
stages . 2,4..

The transition of the multistable device from one stable state to another
involves changes in the state of the output stages.

Table 3 illustrates the transition for the UMD version corresponding to
the 2nd row of Table 1.

UABRLE £,

State of Que, of the UMD stage:

A
|
i

of wahle

state of UNID 4

1

|
|
|
|
|
|
o
o

I'his transition involves a shift of a two-zero combination, which was
preserved in all the stable states of the circuit. This combination is
interpreted as a code combination of the UMD.

The code combination of UMD is thus a certain combination of Out. - _;and
Qute—. which is limited and includes Out: - and which is not broken by
transgition to any stable state of the UMD. The number of stages forming
the code combination 1s taken equal to m.

From Tables 1 and 2 we see that m ranges between the limits

m=1toin—1).

The minimum value of m 1s equal to 1, which corresponds to a code
combination comprising Out.—-. only. A special case is obtained when m=n.
Then by definition no shift is possible. Irrespective of the external
disturbances, the circuit is restored to the initial state. The sequence of
changes in the state of this circuit is shown in Table 4.

UMD with m=n is called a multistage univibrator in our terminology.

The component stages of the UMD can be linked into an open or a closed-
ring configuration. In the case under consideration, transmission of shift
pulses down the open line will not shift the code combination beyond the
n-th stage. The right-hand limit of the terminal position of the code com-
bination is the n-th stage, or more precisely the output Out._.n.




TABLE 4,

Sequence of UMD states for m=n

Disturbance during
initial disturbance and terminal
transients

Pulse making the 2nd transistor
conducting 011110 101110 011110
Pulse making the 3rd transistor
conducting 011110 010111 011110

Let the initial state of the UMD be such that the beginning of the code
combination coincides with the 1st stage, i.e., we have Out'c~c. In
Tables 1 and 2 all the code combinations are shown in the initial position
so as to simplify comparison.

The ring configuration in this case is ensured by means of pulse or
potential coupling so that the code combinations are shifted unaltered from
the terminal to the initial position by a single pulse. This property of the
UMD defines the boundary of the Ist and the n-th stage in a ring configura-
tion, provided that the lst stage has been identified.

Under this definition, all the conclusions for an open-configuration UMD
are applicable to a ring-configuration UMD. Table 4 illustrates the
transition of the code combination from the terminal to the initial position
in a ring configuration.

Pulse coupling of stages permits obtaining any sequence of shifts of the
code combination. The desired shift sequence is selected in block 2
(Figure 2) by linking the outputs of the corresponding stages

lp—b, Ip—c, -+, Bp—b, Ip—c.

To obtain a directional shift, we have to link the p—c¢ outputs of one
stage with the p—b outputs of another stage.

Consider a particular example. Suppose we wish to generate a shift
sequence of the code combination Out._. as shown in Table 5.

TABLE 5.

State of Out, of the UMD stages

Pulse no.
2 3 4




The pulse outputs in this case should be connected as shown in Table 6.

TABLE o,

o
=
|
T

We see that any given position of the code combination is entirely
determined by the preceding position. When a shift pulse is transmitted
down a common bus, “he code combination is shifted in each UMD version
into a position determined by the pulse coupling configuration of the stages.

The potential coupling circuits provide a means for independent shift
of the code combination. By connecting an auxiliary circuit to the outputs
1.,25,...,n (block 3, Figure 2), the code combination can be moved to
any desired position regardless of its original position. This option can
be used, in particular, for restoring the UMD to its initial state.

The UMD is thus controlled in two ways:

a) sequentially, when each new position of the code combination
depends on the previous position. The UMD is controlled by pulses
transmitted through a common bar;

b) in parallel, when the potential coupling circuit moves the code com-
bination to any desired position irrespective of the previous position.

A combination of both methods provides for a flexible control of the
UMD. Consider an example when combined application of the two control
techniques makes it possible to acheive the desired shift sequence with
minimum effort.

The sequence is delined by Table 7.

We see from Table 7 that the code combinations are expected toreturn
repeatedly (after the 3rd, 5th, 7th, and 9th pulses) to the starting position,
thereafter moving to 2nd, 3rd, 4th, and 5th position.

Pulse coupling from 1st stage to 2nd, 3rd, 4th, and 5th stages fails
to ensure time resolution (differentiation between pulses), since the
shift pulses acts simultaneously on all these stages. We will therefore
provide pulse coupling between stages 1,2,1; 3 and 1; 4 and 1; 5 and 1.
To generate the desired shift sequence, the code combination should be
shifted from position 1 to 3, from 1 to 4, and from 1 to 5 using the
circuits 4, 4, and 5 of the potential coupling lines and the auxiliary circuit
of block 3.
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TABLE 7.

State of Out, of UMD stages

1

3 ’ 4
1

|
N
;

|

|

|
|
i

|
{
{

The circuit diagram (Figure 1) shows one of the possible realizations
of block 3, which restores the UMD to the initial state by transmitting a
pulse along the lst bus of the potential coupling network. Here, when the
source is turned on, the transistor is made conducting by the capacitor
discharge current. Bus 1 is thus earthed, and the first transistor of the
multistable trigger is stabilized in conducting state.

IIl. PARTICULAR CASES OF UMD

The UMD can be classified into several distinct functional groups.

1. Multistable triggers. Structurally they are identical to the circuit
shown in Figure 2. They are controlled both by potential coupling and
common-bus pulse coupling.

2. Multistage switch. The structure fits that shown in Figure 2, with
the pulse coupling unit (block 2) omitted. Readily controlled by potential
coupling lines.

3. Multivibrator circuit. The structure is analogous to that shown in
Figure 2 with the potential coupling (block 1) omitted. Exclusively
controlled by pulses. The initial state is the only stable one.

4. Multistage univibrator. The structure is that of Figure 2. Code
combination m=n. When control pulses are sensed, the corresponding
stage changes the state of its outputs only for the pulse duration plus the
time constant of the transients in the circuit.




CONCLUSIONS

1. The generalized structure circuit of the UMD covers a number of
individual multistable devices and provides a general fremework for their
theoretical treatment.

2. Analysis of the UMD structure reveals flexibility of control and
points to ways for the design of new multistable devices.

3. The electric circuit of a multistable trigger (Figure 1) is one of the
possible UMD versions. It illustrates the greater logic potential of these
circuits, since each one-transistor stage has two outputs of opposite
polarity.
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